Attention is drawn to amendment placed after page 134

Correspondence related to the syllabus should be addressed to:

The Pro-Registrar
Caribbean Examinations Council
Caenwood Centre
37 Arnold Road, Kingston 5, Jamaica W.I.

Telegraphic Address: CAXCO JAMAICA
Telephone: (876) 928-2513, 922-9121
Facsimile Number: (876) 967-4972
E-mail address: cxcwzo@cxc.org

Copyright © 2000 by Caribbean Examinations Council
The Garrison, St Michael 20, Barbados
AMENDMENTS

The former Industrial Arts (Electricity/Electronics, Woods, Metals) and Industrial Technology (Electrical, Building, Mechanical Engineering) syllabuses were revised in 2000 and incorporated in one volume titled, Industrial Technology syllabuses. The revised Industrial Technology programme comprising syllabuses in Electrical and Electronic Technology, Mechanical Engineering Technology and Building Technology with options in ‘Woods’ and ‘Construction’ will be used in examinations from 2002. Italics and vertical lines indicate the major amendments and additions in the syllabuses.

Attention is drawn to:

(i) the modularization of the three Industrial Technology syllabuses;

(ii) the addition of common modules of ‘Safety, Health, and Welfare’, ‘Introduction to Computer’, and ‘Career Opportunities’ in each syllabus;

(iii) the SBA requirement that candidates must complete a practical and a written project;

(iv) certification of the Mechanical Engineering and Building Technology at the Technical Proficiency only and the Electrical and Electronic Technology at the Basic and Technical Proficiencies;

(v) the Basic Proficiency in the Electrical and Electronic Technology syllabus not being offered after May/June 2002;

(vi) assessment of the practical component of the syllabuses by School-Based Assessment.

Revised 2000
Content

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amendments</td>
<td>i</td>
</tr>
<tr>
<td>Rationale</td>
<td>1</td>
</tr>
<tr>
<td>Aim</td>
<td>2</td>
</tr>
<tr>
<td>General Objectives for Industrial Technology Programme</td>
<td>2</td>
</tr>
<tr>
<td>Organization</td>
<td>2-4</td>
</tr>
<tr>
<td>Common Modules</td>
<td>5</td>
</tr>
<tr>
<td>Unit 1: Electrical & Electronic Technology</td>
<td>5-41</td>
</tr>
<tr>
<td>General Objectives</td>
<td>6-7</td>
</tr>
<tr>
<td>Format of Examinations</td>
<td>8-9</td>
</tr>
<tr>
<td>Modules</td>
<td>10-30</td>
</tr>
<tr>
<td>The School-Based Assessment Component</td>
<td>31-34</td>
</tr>
<tr>
<td>Workshop/Laboratory Facilities</td>
<td>35-37</td>
</tr>
<tr>
<td>*Selection of Some Symbols Used in Electrical Diagram</td>
<td>38</td>
</tr>
<tr>
<td>*List of Physical Quantities and their Symbols</td>
<td>39</td>
</tr>
<tr>
<td>Suggested Reading List</td>
<td>40</td>
</tr>
<tr>
<td>SBA Candidates' Record Sheet</td>
<td>41</td>
</tr>
<tr>
<td>Unit 2: Mechanical Engineering Technology</td>
<td>42-81</td>
</tr>
<tr>
<td>General Objectives</td>
<td>42</td>
</tr>
<tr>
<td>Format of Examinations</td>
<td>44-45</td>
</tr>
<tr>
<td>Modules</td>
<td>46-70</td>
</tr>
<tr>
<td>The School-Based Assessment Component</td>
<td>71-74</td>
</tr>
<tr>
<td>Workshop/Laboratory Facilities</td>
<td>75-79</td>
</tr>
<tr>
<td>Suggested Reading List</td>
<td>80</td>
</tr>
<tr>
<td>SBA Candidates’ Record Sheet</td>
<td>81</td>
</tr>
<tr>
<td>Unit 3: Building Technology – Option (I) Woods</td>
<td>82-107</td>
</tr>
<tr>
<td>General Objectives</td>
<td>82</td>
</tr>
<tr>
<td>Format of Examinations</td>
<td>84-85</td>
</tr>
<tr>
<td>Modules</td>
<td>86-102</td>
</tr>
<tr>
<td>The School-Based Assessment Component</td>
<td>103-106</td>
</tr>
<tr>
<td>SBA Candidates’ Record Sheet</td>
<td>107</td>
</tr>
<tr>
<td>Unit 3: Building Technology – Option (II) Construction</td>
<td>108-134</td>
</tr>
<tr>
<td>General Objectives</td>
<td>108</td>
</tr>
<tr>
<td>Modules</td>
<td>109-125</td>
</tr>
<tr>
<td>The School-Based Assessment Component</td>
<td>126-129</td>
</tr>
<tr>
<td>Workshop/Laboratory Facilities</td>
<td>130-132</td>
</tr>
<tr>
<td>Suggested Reading List</td>
<td>133</td>
</tr>
<tr>
<td>SBA Candidates’ Record Sheet</td>
<td>134</td>
</tr>
</tbody>
</table>

Not applicable to Units 2 & 3.
Syllabuses For Examinations In Industrial Technology Subjects

♦ RATIONALE

The mandate given to the Caribbean Examinations Council in 1972 by participating governments includes a requirement that the Council provide secondary school leaving examinations that would prepare graduates from the educational system for further study as well as for entry into the world of work. In keeping with the remit, the Council developed and introduced during the 1980’s Industrial Arts syllabuses in Technical Drawing, Woods, Metals and Electricity/Electronics as part of the general education curriculum in the secondary school.

However, in the 1990’s as Caribbean territories responded to global economic changes, there was an urgent need for innovative school programmes that would more adequately prepare school leavers for occupations in industry and its related service fields in addition to satisfying the prerequisite for further training as technicians in specific areas.

To give support to these developmental trends in the region, the Council formulated the Industrial Technology syllabuses in Electrical and Electronic Technology, Mechanical Engineering Technology and Building Technology (Woods: Construction) to supersede its Industrial Arts offerings in the secondary schools. (Technical Drawing is being offered by the Council as a separate syllabus under its own cover). These innovative Industrial Technology offerings are intended to:

i. respond to the technical/vocational education and training needs of the region by providing school courses which focus on the use of both traditional and new materials, systems and processes related to industry;

ii. provide the region with the potential benefit of a reduction in the cost of training by including within the secondary school curriculum more responsive technical training programmes;

iii. provide legitimate alternative for students who aspire to technical and vocational careers in industry and thus increase the number of school leavers who possess entry level qualifications for the world of work.

The syllabus also contributes to the development of selected attributes from the CARICOM Ideal Person document as articulated by the CARICOM Heads of Government. This person is one who demonstrates emotional security with a high level of self-confidence and self-esteem, is aware of the importance of living in harmony with the environment and nurtures its development in the economic and entrepreneurial spheres in all other areas of life (CARICOM Education Strategy, 2000).

This holistic development of students aligns with selected competencies advocated in the UNESCO Pillars of learning. These are learning to be, learning to do, and learning to transform one’s self and society.
AIM

The Industrial Technology syllabuses aim at providing technical training in the use of both traditional and new materials, systems, and processes related to industry.

Each syllabus organized as a Unit provides a relevant course of study for secondary school students aspiring to careers related to the Electrical and Electronic, Mechanical Engineering or Building Technology area, and in so doing responds to the need to provide persons with entry level skills for the various fields.

GENERAL OBJECTIVES FOR INDUSTRIAL TECHNOLOGY PROGRAMME

1. To help students acquire the knowledge, skills and attitudes needed for employment at the entry level and as prerequisites for tertiary education and training in the Engineering, Building and related service fields;

2. To help students acquire practical experiences which will enable them to develop skills in the use of tools, materials and processes associated with the Electrical and Electronic, Engineering or Building area;

3. To help students in the development of skills in planning and designing, through appropriate problem-solving activities;

4. To help students adopt good safety, health and environmental practices;

5. To help students appreciate the importance of codes and specifications related to the Electrical/Electronic, Mechanical Engineering or Building field;

6. To inculcate in students an appreciation of Industrial Technology in the socio-economic development of their country.

7. To provide students with the fundamentals of the computer and its application as it relates to the Industrial Technology programme.

ORGANIZATION

The Industrial Technology programme comprises three Units, namely,

UNIT 1: Electrical and Electronic Technology
UNIT 2: Mechanical Engineering Technology

Each Unit is designed to be covered in the final two years of the full secondary school programme.

CERTIFICATION

The Mechanical Engineering and Building Technology Units will be examined for Technical Proficiency certification only and the Electrical and Electronic Technology Units will be examined for both the Basic and Technical Proficiency certifications. The Basic Proficiency programme will not be offered after June 2002.
(In terms of level of attainment, Technical Proficiency is equated with General Proficiency. The difference is one of orientation rather than level. Whereas the General Proficiency caters to providing general education, Technical Proficiency is more focused on the acquisition of basic knowledge and skills for technical competence in a subject area. Candidates with Technical Proficiency will accordingly have the skills and knowledge to pursue tertiary education or to be employed at the pre-technician level in a related field).

Candidates will be awarded an overall grade reported on a 6-point scale, i.e. Grades I-VI. In addition to the overall grade, there will be a profile report on candidates’ performance under the headings, Knowledge, Application and Practical Ability.

DEFINITION OF PROFILE DIMENSIONS

Knowledge: Recall and comprehension of facts, principles, methods, procedures, theories and structures. Interpretation and extrapolation.

Application: Use of concepts, principles, methods and theories to solve problems in a given situation. Analysis, synthesis and evaluation

Practical Ability: Use tools, materials, processes, and instruments in problem solving situations and to gather and analyse data.

WEIGHTING OF INDUSTRIAL TECHNOLOGY PAPERS

The percentage weightings of the examination components for the Electrical and Electronic Technology, Mechanical Engineering Technology and Building Technology Units are:

<table>
<thead>
<tr>
<th>Basic Proficiency (Electrical & Electronic Technology only)</th>
<th>Technical Proficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper I</td>
<td>20</td>
</tr>
<tr>
<td>Paper II</td>
<td>40</td>
</tr>
<tr>
<td>Paper III (SBA)</td>
<td>40</td>
</tr>
</tbody>
</table>

Allocation of Marks by Paper and Profile

<table>
<thead>
<tr>
<th>PROFILES</th>
<th>Paper I 20%</th>
<th>Paper 2 40%</th>
<th>Paper 3 (SBA) 40%</th>
<th>TOTAL 40%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge</td>
<td>30</td>
<td>60</td>
<td></td>
<td>90</td>
<td>30</td>
</tr>
<tr>
<td>Application</td>
<td>30</td>
<td>60</td>
<td></td>
<td>90</td>
<td>30</td>
</tr>
<tr>
<td>Practical Ability</td>
<td></td>
<td>120</td>
<td></td>
<td>120</td>
<td>40</td>
</tr>
<tr>
<td>TOTAL</td>
<td>60</td>
<td>120</td>
<td></td>
<td>300</td>
<td>100</td>
</tr>
</tbody>
</table>

Notes

Knowledge and Application consist of all areas of the cognitive domain: knowledge of facts, understanding and application of principles, analysis of data, drawing of conclusions, and evaluation of solutions.
Practical Ability refers to the psychomotor domain and includes all practical projects done in the laboratory. It is expected that instructors will emphasize this aspect of the teaching/learning process in order to develop students in both cognitive competence and practical ability.

The learning activities should reflect a theory/practical integration of competencies in the ratio of 60:40 and it is assumed that most of the teaching/learning strategies will take the form of projects, planned experiments, demonstrations, or other activities requiring significant student participation.
COMMON MODULES
(These are compulsory for all the Industrial Technology Units)

SAFETY, HEALTH AND WELFARE

INTRODUCTION TO COMPUTER

CAREER OPPORTUNITIES

SAFETY, HEALTH AND WELFARE

- General Health and Safety Requirements and Procedures
- Appropriate Health and Safety Materials, Tools, Equipment, Gear and Accessories
- First Aid
- Safe and Healthy Working Environment
- Accident Reports
- Maintenance of Common Hand Tools

INTRODUCTION TO COMPUTER

- Basic Computer Appreciation
- Operating the System
- Basic Software Packages
- Computer Applications

CAREER OPPORTUNITIES

- Careers in Electrical and Electronic Engineering, Mechanical Engineering or Building and Other Related Fields
- Professional Ethics and Business Norms
UNIT 1: ELECTRICAL AND ELECTRONIC TECHNOLOGY

GENERAL OBJECTIVES

1. To help students adopt good safety, health and environmental practices.
2. To provide students with the basic concepts and principles used in the electrical field.
3. To provide students with knowledge of motors, generators and transformers and their use in power generation and distribution systems.
4. To provide students with knowledge of electrical codes, devices and wiring principles.
5. To provide students with knowledge of theory and application of electronic devices and circuits.
6. To provide students with basic knowledge of electronic and electrical drawings and the skill to produce them to engineering standards.
7. To provide students with the fundamentals of the computer and its application as it relates to the Industrial Technology programme.
8. To provide students with an awareness of career opportunities that exist in the Electrical and Electronic Engineering and other related fields so that informed decisions can be made with respect to their career path.

MODULES

- **MODULE A1**: SAFETY, HEALTH AND WELFARE
- **MODULE A2**: ELECTRICAL PRINCIPLES
- **MODULE A3**: POWER
- **MODULE A4**: ELECTRICAL INSTALLATION
- **MODULE A5**: ELECTRONICS
- **MODULE A6**: ELECTRICAL/ELECTRONIC DRAFTING
- **MODULE A7**: INTRODUCTION TO COMPUTER
- **MODULE A8**: CAREER OPPORTUNITIES
MODULE A1: SAFETY, HEALTH AND WELFARE

A1.1 General Health and Safety Procedures
A1.2 Appropriate Health and Safety Equipment, Gear and Accessories
A1.3 First Aid
A1.4 Safe and Healthy Working Environment
A1.5 Accident Reports
A1.6 Maintenance of Common Hand Tools

MODULE A2: ELECTRICAL PRINCIPLES

A2.1 Electron Theory
A2.2 OHM's Law
A2.3 Resistance
A2.4 Types of Current
A2.5 Magnetism and Electromagnetism
A2.6 Inductance and Capacitance
A2.7 Types of Circuits
A2.8 Power and Energy
A2.9 Primary and Secondary Cells
A2.10 Electrical Measuring Devices

MODULE A3: POWER

A3.1 Electrical Motors and Generators
A3.2 Single Phase Transformers
A3.3 Power Generation, Transmission and Distribution
A3.4 Motor Control

MODULE A4: ELECTRICAL INSTALLATION

A4.1 Protective Devices
A4.2 Signal Circuits
A4.3 Lighting, Fixtures and Calculations
A4.4 Wiring Installation

MODULE A5: ELECTRONICS

A5.1 Thermoelectricity
A5.2 Semiconductor Devices
A5.3 Basic Digital Logic Elements
A5.4 Basic Radio Transmitting/Receiving System

MODULE A6: ELECTRICAL/ELECTRONIC DRAFTING

A6.1 Symbols
A6.2 Blueprint Reading
A6.3 One-Line Diagram
A6.4 Elementary Diagram
A6.5 Schematic Diagram
A6.6 Flow Diagram
MODULE A7: INTRODUCTION TO COMPUTER

A7.1 Basic Computer Appreciation
A7.2 Operating the System
A7.3 Basic Programming Packages
A7.4 Computer Applications

MODULE A8: CAREER OPPORTUNITIES

A8.1 Careers in Electrical and Electronic Engineering and Other Related Fields
A8.2 Professional Ethics and Business Norms

FORMAT OF EXAMINATION

The format of the examinations for the Electrical and Electronic Technology Unit is:

Basic Proficiency

Paper I (1¼ hours) A 60-item multiple choice test common to Basic and Technical Proficiencies covering Modules 1-4, 6-7 of the Unit. Knowledge and Application will be tested in the ratio of 1:1. The Paper will be worth 60 marks.

Paper II (2¼ hours) A free response paper in three sections covering Modules 1-4, 6-7 of the Unit.

Section A Four compulsory short answer questions involving computations. Each question will be worth 15 marks. The total for the section is 30 for Knowledge and 30 for Application.

Section B Three questions involving drawing. Candidates must answer 2 questions. Each question will be worth 20 marks with 10 for Knowledge and 10 for Application.

Section C Two practically oriented questions drawn from Modules 1-4, 6-7 of the Unit. Candidates must answer one question. Each question will be worth 20 marks of which 10 marks will be for Knowledge and 10 marks for application.

Paper III School-Based Assessment (SBA) Candidates are required to complete two assignments during terms 4 and 5 (Terms one and two of the examination year). Each candidate is required to:

i) perform five laboratory exercises to be selected from a list of eight published by CXC. These will be worth 90 marks for the profile dimension Practical Ability;

ii) complete a written assignment set by CXC based on Module A8: Career Opportunities. This will be worth 30 marks for the profile dimension Practical Ability.

Details of the School-Based Assessment component are on pages 30-34.
Technical Proficiency

Paper I

A 60-item multiple choice test common to Basic and Technical Proficiencies covering Modules 1-4, 6-7 of the Unit. Knowledge and Application will be tested in the ratio of 1:1. The Paper will be worth 60 marks.

Paper II

A free response paper in three sections.

- **Section A**
 Five short-answer questions drawn from Modules A2, A3 and Module A5.2 of the syllabus. Candidates must answer all five questions. Each question will be worth 8 marks of which 4 marks will be for Knowledge and 4 marks for Application.

- **Section B**
 Four essay/problem questions, involving calculations and/or sketches, drawn from all modules of the syllabus. Candidates must answer three questions. Each question will be worth 20 marks of which 10 marks will be for Knowledge and 10 marks for Application.

- **Section C**
 Two practically oriented questions drawn from all modules of the syllabus. Candidates must answer one question. The question will be worth 20 marks of which 10 marks will be for Knowledge and 10 marks for Application.

Paper III

Candidates are required to complete two assignments during terms 4 and 5 (Terms one and two of the examination year). Each candidate is required to:

- **i)** perform five laboratory exercises to be selected from a list of eight published by CXC. These will be worth 90 marks for the profile dimension Practical Ability;

- **ii)** complete a written assignment set by CXC based on Module A8: Career Opportunities. This will be worth 30 marks for the profile dimension Practical Ability.

Details of the School-Based Assessment component are on pages 30-34.

SUGGESTED TIMETABLE ALLOCATION

Notes

It is recommended that a minimum of 4 hours per week should be time tabled for the Electrical and Electronic Technology Unit. Of this, 2½ hours should be for theoretical instruction and the remaining 1½ hours for practical (laboratory) work.

An additional 10 minutes reading time will be allowed for Paper 2. The total time for Paper 2 will therefore be 2 hours and 40 minutes. No writing must be done during the 10 minutes reading time.

The use of calculators will be permitted in the examination.

ALLIED SUBJECTS

Students should be encouraged to include the following subjects in their programme of study: English A, Mathematics, Technical Drawing, Physics and Engineering Science or Chemistry.
SYMBOLS

A list of electrical symbols to be used in the examination is provided at page 37. Electronic symbols are not included, as it is felt that such symbols are standard and most textbooks on the subject will list them.

ELECTRICAL AND PHYSICAL QUANTITIES IN INTERNATIONAL SYSTEM UNITS (SI)

In keeping with the trend toward metrciation, the syllabus is to be taught in SI units. Some of the quantities and symbols which should be adopted are listed on page 38.

MODULE A1: SAFETY, HEALTH AND WELFARE

A1.1: GENERAL HEALTH AND SAFETY REQUIREMENTS AND PROCEDURES

The students should be able to:

1. identify personal and general safety requirements governing workshops and worksites; Requirements as prescribed through rules and regulations for the country.

2. follow safety procedures based on rules and regulations for workshop and worksite.

A1.2: APPROPRIATE HEALTH AND SAFETY MATERIALS, TOOLS, EQUIPMENT, GEAR AND ACCESSORIES

The student should be able to:

1. define safety materials, tools, equipment, gears, accessories; Types of safety materials, tools, equipment, gear, accessories.

2. identify the common safety gears, tools, equipment, materials and accessories for safe use; Clothing; foot, hand and head, others.

3. demonstrate the safe use of materials, tools, equipment and accessories; Electrical/ Electronic tools/equipment, ladders, scaffolding, heavy items, flammable and other materials.

4. identify the different types of fires; Types, accessories, procedures, maintenance.

5. Operate a fire extinguisher. Types of fires and fire extinguishers; Procedures to use fire extinguishers. Maintenance of fire extinguishers.

A1.3: FIRST AID

The student should be able to:
1. define accident, injury, emergency; Types of accidents, injuries, emergencies.

2. describe how to get professional help when an accident occurs; Requirements and procedures to be followed after an accident.

3. explain how to apply first aid on an injured person while waiting for professional help; Contents of First Aid Kit.

A1.4: SAFE AND HEALTHY WORKING ENVIRONMENT

The student should be able to:

1. identify hazards, safe workstations, waste disposal, and hygienic practices; Types of work environment, hazardous situations, disposals. Hygienic practices and requirement

2. identify practices at the workstation/site with reference to the following:
 a) familiarity with area(s);
 b) knowledge of hazards;
 c) maximization of resources;
 d) proper cleaning and maintenance schedule;
 e) suitable work and maintenance procedures/method;
 f) storage and space utilization;
 g) suitable behaviour patterns;
 h) correct methods of waste disposal;
 i) rules, regulations, specifications;
 j) assessment and record recycling; Knowledge of the environment and hazards; safe storage of materials and supplies, maintenance of tools, equipment and machine.

3. perform mock drills for emergencies. Rules, specifications and regulations for dealing with accidents.

Fire, natural disaster, emergency procedures.
A1.5: ACCIDENT REPORTS

SPECIFIC OBJECTIVES

The student should be able to:

1. identify types of accidents, injuries and emergencies;
2. describe the procedures followed in dealing with an accident;
3. prepare an accident report that identifies the cause of the accident.

CONTENT

Differentiate accidents, injuries, and emergencies.

Schedules and procedures.

A1.6: MAINTENANCE OF COMMON HAND TOOLS

The students should be able to:

1. maintain, clean and inspect common hand tools;
2. describe the correct operational uses for such tools.

Pliers, wrench, spanners, hacksaw, plastic mallet, screwdriver, hammer, centre punch, cold chisel, taps and dies, tin snips.

MODULE A2: ELECTRICAL PRINCIPLES

A2.1: ELECTRON THEORY

The students should be able to:

1. draw and label structure of an atom;
2. define the units of electrical quantities;
3. use calculations to solve problems involving Q, I, t, V and R.

Matter, elements, atoms, molecules and compounds; simple electron theory.

Structure of the atom: charge on each particle, free electrons.

Coulombs, Amperes, Volts, Ohms.
A2.2: OHM’S LAW

SPECIFIC OBJECTIVES

The student should be able to:

1. state Ohm’s law as a relationship between current, voltage (p.d.) and resistance;

2. formulate and verify Ohm’s law from experimental data;

3. manipulate formulae involving use of Ohm’s law;

4. calculate resistance, voltage and current in an electrical circuit using Ohm’s Law.

CONTENT

Experiment to verify Ohm’s law. Definition of electric current, voltage and resistance.

Using graphs.

Formulae establishing the relationship between current, voltage and resistance.

Application of Ohm’s law. Concept of the conventional flow of current and electron flow.

A2.3: RESISTANCE

The student should be able to:

1. identify types of resistors;

2. identify resistor values from colour code for carbon resistors;

3. draw and connect resistors in series, parallel and series/parallel;

4. calculate total resistance in series, parallel and series-parallel circuits;

5. connect rheostats and potentiometers in circuits;

6. state the factors affecting resistance of materials;

7. define resistivity of materials and state its unit;

Types of resistors: carbon; wire wound; metalized; variable. Special types: VDR, LDR

Resistor colour code.

Resistors in circuit: series, parallel and series/parallel.

Variable resistors used as rheostats and potentiometers.

Factors affecting resistance: type of material; C.S.A.; length, temperature.

Resistivity.
<table>
<thead>
<tr>
<th>A2.3: RESISTANCE</th>
<th>SPECIFIC OBJECTIVES</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>The student should be able to:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. define temperature co-efficient of resistance and state its unit;</td>
<td></td>
<td>Temperature coefficient. Concept of: Resistance/ temperature, positive temperature coefficient, negative temperature coefficient, zero temperature coefficient.</td>
</tr>
<tr>
<td>9. solve problems involving resistivity and temperature coefficient of resistance;</td>
<td></td>
<td>Temperature coefficient of resistance, resistivity, units.</td>
</tr>
<tr>
<td>10. identify materials with positive, negative and zero temperature coefficient of resistance.</td>
<td></td>
<td>Materials used with positive, negative and zero temperature coefficient. Selection of electrical conductors.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A2.4: TYPES OF CURRENT</th>
<th>The student should be able to:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. identify sources of AC and DC;</td>
<td></td>
<td>Sources of alternating and direct current:</td>
</tr>
<tr>
<td>2. define alternating current and direct current;</td>
<td></td>
<td>Alternating current with reference to sine wave, cycle, frequency, period, amplitude, average value, r.m.s. value, phase, applications.</td>
</tr>
<tr>
<td>3. compare AC and DC</td>
<td></td>
<td>Direct current with reference to magnitude and direction, waveform (sketch), AC, DC, Peak, RMS and average value.</td>
</tr>
<tr>
<td>4. using calculation, convert values from one to the other.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A2.5: MAGNETISM AND ELECTROMAGNETISM</th>
<th>The student should be able to:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. explain the principle of magnetism;</td>
<td></td>
<td>Molecular theory of magnetism; properties of magnets.</td>
</tr>
<tr>
<td>2. apply the basic laws of magnetism;</td>
<td></td>
<td>Laws of magnetism.</td>
</tr>
<tr>
<td>3. determine types of magnetic materials;</td>
<td></td>
<td>Magnetic materials: magnetic, non-magnetic and dia-magnetic materials.</td>
</tr>
<tr>
<td>4. explain the principle of magnetic shielding;</td>
<td></td>
<td>Magnetic shielding.</td>
</tr>
</tbody>
</table>
A2.5: MAGNETISM AND ELECTROMAGNETISM

SPECIFIC OBJECTIVES

5. wind a coil for an electro-magnet;

6. determine the direction of magnetic field around a current-carrying conductor;

7. plot the magnetic field around a single conductor and solenoid;

8. determine the direction of force between two current-carrying conductors in parallel;

9. perform calculations to determine flux density and energy stored in a magnetic field.

The student should be able to:

1. define inductance; (L)

2. connect inductors in electrical circuits;

3. wind simple transformers;

4. describe the effects of inductors in electrical circuits.

CONTENT

Simple electromagnets

Direction of magnetic field: rules to determine the direction of field and current. (Conventional and electron flow).

Magnetic field of a conductor and solenoid.

Force between two current-carrying conductors in parallel.

Calculate flux density; energy stored in a magnetic field.

Definition of flux, energy stored, force and their SI units.

A2.6 (a): INDUCTANCE

SPECIFIC OBJECTIVES

1. define inductance; (L)

2. connect inductors in electrical circuits;

3. wind simple transformers;

4. describe the effects of inductors in electrical circuits.

The student should be able to:

1. define capacitance (C);

2. series and parallel;

3. choke coils, turns ratios, voltage and current transformers.

4. series and parallel, Time constant, Lenz’s Law

A2.6 (b): CAPACITANCE

The student should be able to:

1. define capacitance (C);

3. Quantity of charge in a capacitor.
A2.6: (b) CAPACITANCE CONT’D

SPECIFIC OBJECTIVES

The student should be able to:

2. make a simple capacitor;

3. connect capacitors in an electrical circuit;

4. calculate total capacitance in series or parallel;

5. determine value of a capacitor by colour code;

6. identify the different types and applications of capacitors.

CONTENT

Types and construction of capacitors.

Capacitors in series and parallel.

Capacitor colour code.

Effects of capacitance in a DC circuit, time constant.

A2.7: TYPES OF AC & DC CIRCUITS

The student should be able to:

1. define the basic components of a simple circuit;

2. deduce current and voltage relationships in series and parallel AC & DC circuits;

CONTENT

Simple circuits: source, load, conductor, control and protection.

A2.8: POWER AND ENERGY

The student should be able to:

1. define electrical power and energy, and state their SI units;

2. use power formula to perform calculations;

3. calculate power in series and parallel circuits, using power formula;

4. read a kwh meter;

5. calculate simple energy bills.

CONTENT

Definition of power and energy; units of measurement.

Manipulation of power formula.

Power in series and parallel circuits.

Kilowatt-hour meter: analogue and digital types.

Calculation of simple energy bills; flat rates and block rates, effect of fuel charges.
A2.9: PRIMARY AND SECONDARY CELLS

SPECIFIC OBJECTIVES

The student should be able to:

1. define primary and secondary cells;

2. conduct simple experiments demonstrating the conversion of chemical energy to electrical energy;

3. connect cells in series and parallel as a source of power;

4. differentiate between e.m.f. and p.d. of a cell;

5. determine the resultant voltage of cells connected in series and parallel;

6. calculate internal resistance of cells;

7. charge and maintain secondary cells;

8. determine level of charge of secondary cells.

CONTENT

Leclanché, Mercury, Nickel Cadmium cells, and their e.m.fs; essential differences between primary and secondary cells.

Chemical to electrical energy.

Simple voltaic cells; electrolytes; wet and dry cells; Polarization

Definition of e.m.f. and p.d.

Cells in series and parallel.

Internal resistance.

Characteristics and advantages of lead-acid and alkaline cells. Charging lead-acid cells. Mixing electrolyte.

Hydrometer and high rate discharge tester.

A2.10: ELECTRICAL MEASURING DEVICES AND MEASUREMENT

The student should be able to:

1. sketch and label constructions of moving-coil and moving-iron instruments;

2. connect electrical measuring instruments in circuit;

Moving coil and moving-iron instruments.

Precaution in connecting and handling measuring devices, voltmeter, ammeter, ohm-meter, wattmeter and multimeter, Analog and Digital.
Specific Objectives

The student should be able to:

3. read and interpret linear and non-linear scales when using instruments;

4. calculate series and shunt resistances for scale extensions;

5. explain the principle of operation of Wheatstone bridge;

6. outline factors which affect the sensitivity of instruments;

7. identify various waveform patterns on the oscilloscope;

8. measure voltage and frequencies on the oscilloscope;

9. use signal generator to supply various waveforms to circuits.

Content

- Linear and non-linear scales; uses of series resistors in voltmeters.
- Function of shunt and series resistors in ammeters and voltmeters; use of series and shunts.
- Wheatstone bridge.
- Ohms per volt, damping and meter movement (qualitative treatment). Definition of Sensitivity.
- Waves: square, sawtooth, sine, use of controls; CRT.
- Voltage and frequency measurements using the oscilloscope.
- Signal generator: function and application.
MODULE A3: POWER

A3.1: ELECTRICAL MOTORS AND GENERATORS

SPECIFIC OBJECTIVES

This student should be able to:

1. connect single and three phase motors to supply mains;
2. reverse the direction of rotation for A.C and D.C motors;
3. service and maintain electric motors;
4. connect simple DC machines;
5. calculate synchronous speed and percentage slip for A.C. motors;
6. calculate induced e.m.f based on Lenz’s law.
7. vary voltage output of some generators;
8. service and maintain generators;

CONTENT

Electric Motors
- Construction and operation of simple AC single and three phase motors.
- Reversal of rotation. Standard speeds. Simple starters for single and three phase motors, e.g AC/DC motors, direct-on-line (DOL) or across-the-line (ATL). Use of push buttons; stop, start, reversal. Maintenance and servicing of motors.
- Types of machines, construction, operation and uses of simple DC machine characteristics: series, shunt, compound; reversal of rotation; maintenance and servicing, universal motors and their application.
- Speed frequency, slip.

Generators
- Types and construction of A.C. and D.C. generators.
- Maintenance and servicing. Varying output voltages. Methods of excitation. Terminal voltage, back e.m.f.

A3.2: SINGLE PHASE TRANSFORMER

The student should be able to:

1. explain the principle of operation of a transformer;
2. calculate the turns, voltage and current ratios of transformers;

CONTENT

- Mutual inductance; energy stored in a magnetic field; isolation step-up and step-down transformers.
- Transformer action; formulae; transformation ratio.
A3.2: SINGLE PHASE TRANSFORMER CONT’D

SPECIFIC OBJECTIVES

The student should be able to:

3. identify core construction and other types of single-phase transformers;

4. calculate power transformer efficiency;

5. state reason for inherent high efficiency of power transformer;

6. connect power transformers in circuits to supply load.

CONTENT

Core laminations: shell and core type; auto-transformers; double wound.

Transformer losses: iron and copper losses; hysteresis; eddy current and copper; transformer cooling methods (air and oil).

Single-phase connections; dual voltage primary and secondary connections. Polarity of winding; no moving parts hence no frictional loss.

A3.3: POWER GENERATION, TRANSMISSION AND DISTRIBUTION

The student should be able to:

1. state the principal sources of primary energy used for the generation of electricity in the region;

2. describe briefly the principal methods of conversion of primary energy into electrical energy;

3. identify and explain the use of alternative sources of primary energy for generating electricity;

4. explain the transmission and distribution of electricity from the generating station to the consumer.

CONTENT

Oil; gas; hydro; coal; reasons for using AC instead of DC.

Steam-driven generators; internal combustion driven generators; hydro-driven generators; conditions necessary for method used.

Solar; wind; geo-thermal; tidal; bio-gas.

The principal elements needed; power transformers; transmission lines; substations and load centres; distribution lines and transformers, low tension lines; service lines to consumer.
A3.4: MOTOR CONTROL

SPECIFIC OBJECTIVES

The student should be able to:

1. list standard symbols and state function of devices used in motor control circuits;
2. draw and connect a wiring diagram using an elementary line diagram;
3. state the difference between a power and a control circuit;
4. describe the operation of AC manual contactor and motor starters;
5. state the basic types of reduced voltage starter.

CONTENT

- Push button station, Relays, Limit switch, Timers Flow switch, Liquid level switch and other switches.
- One line diagram
- Wiring diagram
- Power circuits
- Sequence control circuit, two-wire and three-wire control circuits.
- Forward, reverse, jog, overload protection, over current protection, full voltage manual starter.
- Primary resistors, auto-transformer part-winding, WYE delta.

MODULE A4: ELECTRICAL INSTALLATION

A4.1: PROTECTIVE DEVICES

The student should be able to:

1. define short circuits and overloads;
2. list methods of short circuit and overload protection;
3. test and replace fuses and circuit breakers;
4. determine the rating of fuses and circuit breakers for various pieces of equipment.

CONTENT

- Concept of short circuit and overloads; dangers of short circuit.
- Methods of overload protection: fuses and circuit breakers; magnetic and bimetal devices; motor overload protectors.
- Types of fuses and circuit breakers used in building and household equipment.
- Fusing current, fusing factor, current rating, loading, selection of fuses and circuit breakers.
A4.2: SIGNAL CIRCUITS

SPECIFIC OBJECTIVES

The student should be able to:

1. draw and connect various bell/buzzer circuits;
2. connect and test burglar alarm circuits;
3. explain the principles of operation of the telephone receiver and transmitter.

CONTENT

Simple circuits using trembler bells, door chimes and buzzers. Normally open and normally closed circuits; relays; magnetic reed-switches. Principle of the telephone receiver and transmitter operation.

A4.3: LIGHTING FIXTURES AND CALCULATIONS

SPECIFIC OBJECTIVES

The student should be able to:

1. identify different types of lamps and lamp bases/sockets;
2. list advantages and disadvantages of incandescent and gas-filled lamps;
3. explain the rationale for connecting lamps in series or parallel;
4. draw and connect fluorescent lamp circuits;
5. install wall and ceiling fixtures;
6. make simple lighting calculations.

CONTENT

Types of lamps and lamp bases/sockets, Edison, screw, bayonet. Gas-filled lamps: mercury; incandescent; fluorescent; sodium halogen. Incandescent, effect on voltage, circuit, light intensity. Operation of fluorescent lamps and control gear; instant start, rapid start, switch start, fault tracing. Wall and ceiling fixtures and mounting devices, earthing. Illumination, inverse square law; cosine law; luminous intensity.
A4.4: WIRING INSTALLATION

SPECIFIC OBJECTIVES

The student should be able to:

1. sketch and interpret simple wiring diagrams;
2. sketch various types of switches/receptacles used with common electric circuits;
3. install and connect fixtures for operation of lighting and power circuits for single phase operation;
4. conduct tests on electrical circuits;
5. identify various types of wiring methods and terminations, their uses, applications and limitations.

CONTENT

- Light and power circuit, earthing, polarity, insulation and continuity.
- SPST, DPST, two-way, intermediate, 3-pin receptacles.
- Metal/PVC conduit, single and double insulated cable, colour code, lamp-holders, socket outlet, switches.
- Testing procedures: polarity, insulation, earthing, continuity, earth leakage circuit breaker.
- Sheathed and armoured cable; light gauge (EMT) and (PVC) conduits, types of termination.

MODULE A.5 ELECTRONICS

A5.1: THERMOELECTRICITY

The student should be able to:

1. describe the thermoelectric effect of electricity;
2. explain the basic principles and applications of heat sensitive devices;

- Thermionic emissions.
- Themistor, thermocouple.

A5.2: SEMICONDUCTOR DEVICES

(A) DIODES

The student should be able to:

1. describe the structure of semiconductor materials;
2. connect and describe the action of full and halfwave rectification circuits;

- Electron theory, valence, doping, N & P type materials, PN junction; Ideal diode and semiconductor diodes
- Rectification circuits: half-wave and fullwave.

A5.2: SEMICONDUCTOR DEVICES CONT’D

SPECIFIC OBJECTIVES

The student should be able to:

3. state the function of the power transformer in rectifier circuits;

4. describe the action of capacitors and inductors in filtering circuits;

5. explain how voltage regulation and stabilization are achieved by use of the Zener diode;

6. connect and explain the principle of operation of voltage-doubler circuits;

7. describe the operation of the transistor;

8. connect basic transistor circuit in CE, CC, CB configurations;

9. list advantages and selections of CE, CC CB configuration;

10. explain the functions and operation of circuit components of Class A and Class B amplifier;

CONTENT

- Bridge and Biphasic full-wave rectification (centre tap).
- Smoothing circuits LC/RC filter (pi-network).
- Zener diode operation; characteristics, avalanche/breakdown effect; applications; calculations of series resistor.
- Voltage-doubler circuits

B) BI-POLAR JUNCTION TRANSISTOR

- Action and characteristics of transistors; terminal identification test.
- Types: PNP and NPN, polarities of supply to circuits; use of ohmmeter to test transistors.
- Amplification in CE, CB, CC circuits, calculate transistor parameters using loadline.
- Comparison of input, output of transistor circuits; biasing (use of oscilloscope).

C) THYRISTORS (SCRs)

- Thyristor: layer construction; terminals; anode, cathode, gate.
- Application of thyristor, for example dimmers, battery charger, speed control.
A5.3: BASIC DIGITAL LOGIC ELEMENTS

SPECIFIC OBJECTIVES

The student should be able to:

1. **draw and identify symbols for common logic gates;**
 - Logic Gates: AND, OR, NOT, NAND, NOR, Exclusive - OR, inverter.

2. **develop truth tables for single logic gates;**
 - (British and American symbols), binary system.

3. **write simple boolean expression for logic gates;**
 - Applications or uses of logic gates.

4. **explain the underlying principles for logic gates by use of mechanical switches;**
 - Use of SPST and DPST switches to establish logic principles.

5. **describe the fundamental concept of ICs;**
 - Integrated Circuits (ICs).

6. **list the advantages of the use of ICs.**
 - Comparisons with discrete components

CONTENT

- Logic Gates: AND, OR, NOT, NAND, NOR, Exclusive - OR, inverter.
- (British and American symbols), binary system.
- Applications or uses of logic gates.
- Use of SPST and DPST switches to establish logic principles.
- Integrated Circuits (ICs).
- Comparisons with discrete components

A5.4: BASIC RADIO & TV TRANSMITTING/RECEIVING SYSTEM

The student should be able to:

1. **describe the production and use of electromagnetic radio and TV frequency waves;**
 - (This module should be treated qualitatively)

2. **identify the application of common directional and omnidirectional receiving antennae;**
 - Characteristics of magnetic waves; low and high frequency; harmonics; calculation of wave length and frequency.

3. **describe the action of a tuned circuit modulation in radio and TV circuits;**
 - Receiving antennae for home radio and TV reception.

4. **draw a block diagram of the stages of a radio and TV receiver/transmitter.**
 - AM/FM modulation advantages and disadvantages. Radio and TV receivers and oscillators.
 - Knowledge of sequence of stages in AM/FM radio and TV receiver/transmitter.
MODULE A6: ELECTRICAL/ELECTRONIC DRAFTING

A6.1: SYMBOLS

SPECIFIC OBJECTIVES

The student should be able to:

1. identify standard symbols used in electrical circuit;

2. draw symbols to engineering standard

CONTENT

- Type, size, line-weight, orientation and abbreviation.

A6.2: BLUEPRINT READING

The student should be able to:

1. state the characteristic of various types of electrical plans;

2. utilize the methods and techniques used in industry to interpret plans for electrical installation;

3. design and draw electrical plans to engineering standards;

CONTENT

- Plot plan, residential plan, commercial plan. Types of distribution systems, signalling circuits.
- Symbols, wiring layout, specification of plans.
- Basic design procedures, linework, regulation, symbols, abbreviation (notations)

A6.3: ONE-LINE DIAGRAM

The student should be able to:

1. state the purpose of utilizing one-line diagrams;

2. describe the principle of operation of one-line diagrams;

3. state the principles governing preparation of one-line diagrams;

4. convert one-line to three-line diagram and visa versa.

CONTENT

- One-line diagrams.
- Symbols, type of distribution system, devices characteristic.
- Basic procedure, Linework, regulation, notations..
- Basic procedure, linework, regulation, notations.
A6.4: ELEMENTARY DIAGRAM

SPECIFIC OBJECTIVES

The student should be able to:

1. state the characteristics of an elementary diagram;
2. describe the principle of operation of an elementary diagram;
3. prepare simple two and three wire control circuits for induction motors for a given set of operation specifications;

CONTENT

- Symbols, power circuit, control circuit.
- Sequence control, two-wire control, three-wire control.
- Basic design procedure, linework, regulation, notations.

A6.5: SCHEMATIC DIAGRAM

The student should be able to:

1. state the characteristics of schematic circuits;
2. describe the principle of operation of schematic circuits;
3. prepare schematic diagrams to engineering standards.

CONTENT

- Symbols of Electronic/Electrical devices.
- Types of schematic circuit, function of electronic devices.
- Basic design procedure, linework, specification.

A6.6: FLOW AND BLOCK DIAGRAM

The student should be able to:

1. state the purpose of utilizing flow and block diagrams;
2. prepare flow and block diagrams to engineering standards.

CONTENT

- Flow and block diagrams.
- Basic design procedure, linework, specifications.
MODULE A7: INTRODUCTION TO COMPUTER

A7.1: BASIC COMPUTER APPRECIATION

SPECIFIC OBJECTIVES

The student should be able to:

1. list the various parts that make up a computer system.

CONTENT

Input and output devices, storage devices, control processing unit, system software, application software, computer networks, protective devices: voltage regulator, surge protector, UPS.

A7.2: OPERATING THE SYSTEM

The student should be able to:

1. identify the steps involved in operating the computer system.

CONTENT

Boot up the system; format a blank disk; back up data; software application; copy files; file management; DOS Windows, Mac OS.

A7.3: BASIC SOFTWARE PACKAGES

The student should be able to:

1. perform simple tasks using commonly available applications.

CONTENT

Windows; productivity tools: Wordprocessing, Spreadsheet, Data Base Management, AutoCad, Graphic Packages.

A7.4: COMPUTER APPLICATIONS

The student should be able to:

1. list the many uses of the computer in Industry;

CONTENT

Accounting/financial applications; human resource applications; material/inventory management; process control; robotics; decision support system; research and development, CAD/CAM, CNC.
Module A8: Career Opportunities

A8.1: Careers in Electrical & Electronic Engineering and Other Related Fields

The student should be able to:

1. **List career opportunities in the Electrical & Electronic Engineering and related fields locally and regionally;**

2. **Compare occupational profiles and descriptions of two occupations in the field of engineering;**

3. **Identify opportunities/situations in your community/territory that may lead to employment or self-employment in Electrical and Electronic Technology or related fields;**

4. **Source information on career opportunities Electrical and Electronic Technology;**

5. **Prepare and write report/short paper on:**
 - **Industrial tours made;**
 - **Current innovations in the field of engineering;**
 - **Engineers, inventors or educators who have made significant contributions to the field of engineering.**

Specific Objectives

<table>
<thead>
<tr>
<th>Specific Objectives</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>List career opportunities in the Electrical & Electronic Engineering and related fields locally and regionally;</td>
</tr>
<tr>
<td>2.</td>
<td>Compare occupational profiles and descriptions of two occupations in the field of engineering;</td>
</tr>
<tr>
<td>3.</td>
<td>Identify opportunities/situations in your community/territory that may lead to employment or self-employment in Electrical and Electronic Technology or related fields;</td>
</tr>
<tr>
<td>4.</td>
<td>Source information on career opportunities Electrical and Electronic Technology;</td>
</tr>
<tr>
<td>5.</td>
<td>Prepare and write report/short paper on:</td>
</tr>
<tr>
<td>a)</td>
<td>Industrial tours made;</td>
</tr>
<tr>
<td>b)</td>
<td>Current innovations in the field of engineering;</td>
</tr>
<tr>
<td>c)</td>
<td>Engineers, inventors or educators who have made significant contributions to the field of engineering.</td>
</tr>
</tbody>
</table>

Content

- **Fields:** Electrical/Electronic Engineering; Mechanical/Production Engineering; Civil/Construction Engineering; Industrial Engineering.
- **Industrial or maintenance plants jobs.**
- **Professional journals/organisations, internet, newspapers.**
- **Visits to multinational, regional, national engineering and service companies.**
- **Use of the computer in engineering.**
- **Great inventors and engineers.**
A8.2: PROFESSIONAL ETHICS AND BUSINESS NORMS

SPECIFIC OBJECTIVES

The student should be able to:

1. **list work habits necessary for the development of good work attitudes;**

2. **identify education/training/qualification requirement for selected occupations in the field of Electrical and Electronic Engineering;**

3. **specify duties and responsibilities for occupations related to Electrical and Electronic Technology;**

4. **demonstrate knowledge of business norms, regulations and codes.**

CONTENT

| Code of ethics, punctuality, regularity, neatness, following instructions, safety, attitude, tolerance, courtesy, human relations. |
| Secondary education, practical experience and training certificate, Diploma, Associate Degree, Bachelor Degree. |
| Duties and responsibilities of semi-skilled, skilled, supervisor, manager. |
THE SCHOOL-BASED ASSESSMENT COMPONENT (BASIC AND TECHNICAL PROFICIENCIES)

RATIONALE

The School-Based Assessment component of the Electrical and Electronic Technology syllabus will measure the practical skills not tested on the multiple-choice and free response papers (Papers 1 and 2).

The laboratory exercises set for the SBA assignments are intended to deepen the students’ knowledge and help them achieve competency in skills required in the Electrical/Electronic industry and that are within the competence of secondary school candidates.

By focusing on processes as well as product, the SBA component will allow students to demonstrate improvement in skills over a period of time and for their teachers’ involvement in the assessment process.

REQUIREMENTS

Each candidate is required to complete, a practical and a written assignment, during terms 4 and 5 of the two years’ course (Terms one and two of the examination year). The practical assignment is worth 90 marks and the written assignment is worth 30 marks.

Practical Assignment

For the practical assignment each student is required to perform FIVE laboratory exercises chosen from a list of eight exercises published by CXC. These exercises are set out in a booklet which is accompanied by a detailed mark scheme to be used by the teacher for assessing the students’ performance in each exercise. CXC will supply one laboratory book for each candidate. The books should be kept by the teacher when not required for candidates’ use.

Each student should keep a complete record, in his/her laboratory book, of the conduct and findings of the FIVE selected exercises. At the completion of EACH exercise, the laboratory book should be returned to the teacher for safe keeping.

Written Assignment

The written assignment will take the form of a report of about 1000-1200 words based on the Common Module: Career Opportunities. Candidates must write on the topic set by CXC for each examination. The topic will be based on the themes in Module, i.e.

i) Job Search:

 a) Jobs in the Electrical and Electronic industry (types, wages, other remuneration).

 b) Qualifications for the job (A class/B class/C class workers) or for apprentices and/or trainees.

 c) Type, availability and cost of training required: trade school, vocational/technical school, college or university.
d) Desirable work habits and attitudes.

e) Writing letters of application for various types of jobs (how to set out a CV).

f) Interviewing skills.

ii) Career Choice:

 a) Gathering information on careers (from libraries, labour offices, internet).

 b) Writing profiles on different careers.

 c) Planning debates and lectures on different careers under the guidance of the teacher.

 d) Making and justifying a career choice.

iii) Industrial Visits:

 a) Planned visits to industries, industrial sites. (These should include small, medium and large businesses). A good example is a small aluminium foundry where local entrepreneurs make coal pots, pots, and covers.

 b) Preparation of report on the visit: the report should include, where possible, sketches, drawings and photographs in addition to the written material.

iv) Profile of Engineer or Inventor:

 a) Summary of biographical data.

 b) Major works/experiments/inventions and how these were validated.

 c) Evaluation/impact of individual’s contribution to the industry.

Candidates will be assessed on accuracy of information, clarity of presentation, the use of technical language and knowledge of career opportunities in the Electrical/Electronic industry as outlined in Common Module of the Unit.

GUIDELINES FOR THE CONDUCT OF LABORATORY EXERCISES

In order to conduct successful laboratory exercises and experiments, the student should:

i) ensure that he/she knows the objective of the exercise;

ii) read through the exercise carefully, making sure that he/she knows what is to be investigated;

iii) obtain all necessary materials before beginning the exercise, and check instruments for possible defects;

iv) follow the instructions accurately, and conduct the exercises step by step and record results as soon as possible;
v) ensure that all electrical circuits are checked by the teacher before switching on main voltage to the circuit;

vi) observe all necessary safety precautions.

After each exercise has been completed, the student is required to write an accurate account of it in his/her laboratory book using the following outline:

i) Title

ii) Objective

iii) Apparatus

iv) Procedure

v) Schematic diagrams

vi) Observations (record of results in tabular form or otherwise)

vii) Relevant Theory

viii) Answers to questions

ix) Conclusions

NOTES

Teachers and students should note the following in relation to the laboratory exercises:

i) Equivalent metric dimensional sizes may be used.

ii) Where a specified component is not available, one nearest in value may be substituted. In such cases an explanatory report must be submitted.

iii) Earthing and Safety requirements are to be observed and must be consistent with wiring regulations.

iv) Where practical steps have been omitted from some of the exercises, the teacher is expected to assist the candidate in setting them out in a logical sequential order in his/her laboratory book.

v) Where no apparatus is listed, the teacher is expected to list these in the candidate's laboratory book.

vi) Students are allowed to consult their teachers.

vii) The specified format for writing up the experiments in the laboratory books should be adhered to.
viii) Students should state precisely the conclusions for each exercise. They should express clearly and concisely what has been learnt. Any discrepancies or deviations from the normal theoretical results should be accounted for.

ix) The front cover of each laboratory book **MUST** be clearly filled in with the candidate’s name, registration number, school, territory and marks awarded for each exercise.

x) Only **ONE** laboratory book is to be submitted for **EACH** candidate.

ASSESSMENT OF ASSIGNMENTS

Teacher Assessment

The teacher will mark the assignments and submit the marks on the specified Assessment Sheet (see specimen SBA Candidates’ Assessment Sheet on page 40) to the Local Registrar to reach CXC Headquarters by April 30 in the year of the examination. Local Registrars will therefore set their own deadline date to fall prior to April 30. The laboratory exercises and the written assignment are to be marked by the teacher using the mark scheme provided by CXC for each of these SBA activities.

For the laboratory exercises, marking should be done both during and on completion of these exercises. At the end of an exercise, marks must be recorded in the column labelled Teacher’s Mark in the student’s laboratory book. Whole marks only are to be awarded and they must be based on the criteria stated in the mark scheme.

Teachers should also fill in the Summary of Candidate’s Marks at the front of each laboratory book. All laboratory books must be signed by the teacher prior to their submission to the CXC Local Registrar.

External Assessment

An external Assessor will visit each school twice during the final year. On the first visit he/she will examine the laboratory environment and assess the process of completing the exercises and on the final visit he/she will reassess the completed exercises already marked by the teacher. The visiting schedule will be agreed on by the Local Registrar, Principal and the Assessor.

Retention of Work

All projects are a part of the examination work and, therefore, will be considered the property of CXC. CXC will request from schools written projects identified by CXC. Projects remaining at the schools **MUST** be securely retained by the school administration on behalf of CXC until three months after the publication of examination results.

MATERIALS FOR LABORATORY EXERCISES

The materials/components specified by CXC in the booklet with the laboratory exercises should be used for the exercises, wherever possible.

In cases where the materials/components specified are scarce, or expensive, equivalents or suitable alternatives may be used. In such cases, an explanatory report must be submitted by the teacher along with the laboratory books.

The completion and marking of laboratory exercises within a class may be so arranged that one or more of the finished products may be dismantled to allow for re-use of any materials/components by other students within the class or in a subsequent exercise.
SBA MATERIALS

By September 1 of each year, schools should receive from CXC Local Registrars further information on the SBA requirements for that academic year. This should include:

i) a booklet with the laboratory exercises (5 per school);

ii) laboratory books (1 per candidate);

iii) list of topics and mark scheme for written assignment.

GUIDELINES FOR RESIT CANDIDATES

Candidates who have obtained at least 50 per cent of the total SBA marks in their initial attempt will not be required to repeat this component of the examination provided that they rewrite the examination in the year immediately following the first sitting.

Such candidates should, on registration, indicate that they are resit candidates and give their registration number from the previous year.

Candidates who have obtained less than 50 per cent of the total SBA marks must repeat the SBA requirements for terms 4 and 5, i.e. the examination year.

WORKSHOP/LABORATORY FACILITIES

Recommended equipment for a class of 16
(Students may, on occasion, work in groups of two or four).

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work tables, complete with AC and DC variable voltages, socket outlets with main voltage. Storage space should be incorporated for storage of materials, tools and projects.</td>
<td>5</td>
</tr>
<tr>
<td>Test and repair bench, complete with facilities for sawing, boring, threading and testing devices for electrical repairs</td>
<td>1</td>
</tr>
<tr>
<td>Half-inch drill press</td>
<td>1</td>
</tr>
<tr>
<td>Director-on-line starter</td>
<td>2</td>
</tr>
<tr>
<td>Motor DC shunt</td>
<td>1</td>
</tr>
<tr>
<td>Motor - single-phase, capacitance-start type, universal, split-phase, shaded pole, capacitor motor</td>
<td>1 each</td>
</tr>
<tr>
<td>Motor - three-phase, S.C. induction</td>
<td>1</td>
</tr>
<tr>
<td>Battery charger</td>
<td>1</td>
</tr>
<tr>
<td>Transformer: 120/240V 1KVA DRY TYPE T/F 12:24V Secondary</td>
<td>1</td>
</tr>
<tr>
<td>Instruments</td>
<td>Quantity</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>Double beam 5" oscilloscope</td>
<td>2</td>
</tr>
<tr>
<td>*Multimeter</td>
<td>10</td>
</tr>
<tr>
<td>Signal generator</td>
<td>2</td>
</tr>
<tr>
<td>Galvanometer</td>
<td>2</td>
</tr>
<tr>
<td>Ammeter, D.C. (0-5A) scale</td>
<td>10</td>
</tr>
<tr>
<td>Ammeter, A.C. (0-5A) scale</td>
<td>10</td>
</tr>
<tr>
<td>Voltmeter, D.C. (0-100V)</td>
<td>10</td>
</tr>
<tr>
<td>Voltmeter, A.C. (0-100V)</td>
<td>10</td>
</tr>
<tr>
<td>Wattmeter (0-500W)</td>
<td>1</td>
</tr>
<tr>
<td>Lightmeter</td>
<td>1</td>
</tr>
<tr>
<td>Insulation tester (Megger)</td>
<td>1</td>
</tr>
<tr>
<td>kWh meter</td>
<td>1</td>
</tr>
<tr>
<td>Transistor tester</td>
<td>1</td>
</tr>
<tr>
<td>Tachometer</td>
<td>1</td>
</tr>
<tr>
<td>Continuity tester</td>
<td>10</td>
</tr>
<tr>
<td>Wire wound variable resistors</td>
<td>10</td>
</tr>
</tbody>
</table>

Students should be encouraged to acquire their own.

<table>
<thead>
<tr>
<th>Tools</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrician pliers – insulated</td>
<td>10</td>
</tr>
<tr>
<td>Slip joint pliers</td>
<td>10</td>
</tr>
<tr>
<td>Diagonal cutting pliers (nippers) – insulated</td>
<td>10</td>
</tr>
<tr>
<td>Long nose pliers – insulated</td>
<td>10</td>
</tr>
<tr>
<td>Large and small screwdrivers, with assorted tips</td>
<td>30</td>
</tr>
<tr>
<td>Large adjustable wrench</td>
<td>5</td>
</tr>
<tr>
<td>Small adjustable wrench</td>
<td>5</td>
</tr>
<tr>
<td>Bending spring (PVC conduit)</td>
<td>4</td>
</tr>
<tr>
<td>Sets of open end spanners - metric</td>
<td>10</td>
</tr>
<tr>
<td>Small tweezer set</td>
<td>10</td>
</tr>
<tr>
<td>E.M.T. benders (Half inch; three-quarter inch)</td>
<td>4</td>
</tr>
<tr>
<td>Medium sized scissors</td>
<td>2</td>
</tr>
<tr>
<td>Plastic mallet</td>
<td>10</td>
</tr>
<tr>
<td>227g. ball pein hammer</td>
<td>10</td>
</tr>
<tr>
<td>Portable drilling machine</td>
<td>1</td>
</tr>
<tr>
<td>*40w soldering iron</td>
<td>5</td>
</tr>
<tr>
<td>Metal files</td>
<td>10</td>
</tr>
<tr>
<td>Portable vice</td>
<td>5</td>
</tr>
<tr>
<td>Allen wrench set</td>
<td>5</td>
</tr>
<tr>
<td>Hacksaw and blade</td>
<td>10</td>
</tr>
</tbody>
</table>
Centre punch 10
Small cold chisel 10
Sets of taps and dies 2
Tin snips (assorted) 2

Miscellaneous

Various sizes of cables, assorted lamps and sockets, compass needles, bar and horseshoe magnets, assorted screws and nuts, primary and secondary cells, various types of solder, various values and types of capacitors.

* Students should be encouraged to acquire their own 40w soldering iron.
Selection of Some Symbols Used in Electrical Diagrams

<table>
<thead>
<tr>
<th>Graphical Symbols</th>
<th>Symbol</th>
<th>Description</th>
<th>Installation Symbols</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary or secondary cell long life represents positive short line negative</td>
<td></td>
<td>Fuse</td>
<td>Electric meter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battery or primary or secondary cell alternative symbol</td>
<td></td>
<td>Filament lamp or bulb</td>
<td>Socket outlet or convenience outlet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earth/chassis</td>
<td></td>
<td>Ammeter</td>
<td>Single gang switch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformer</td>
<td></td>
<td>Voltmeter</td>
<td>Distribution board main control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crossing or Conductors</td>
<td></td>
<td>Electric bell</td>
<td>Filament lamp wall lamp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Electrical Connection</td>
<td></td>
<td>Electric buzzer</td>
<td>Bell push</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction or Conductors</td>
<td></td>
<td>Rectifier or diode</td>
<td>Fluorescent lamp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed Resistor</td>
<td></td>
<td>Switch</td>
<td>D.C. Motor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable Resistor</td>
<td></td>
<td>Alternating current</td>
<td>A.C. Motor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condenser or Capacitor (Fixed)</td>
<td></td>
<td>Head phone</td>
<td>Two way switch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condenser or Capacitor (Variable)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winding or Ductor, coil</td>
<td></td>
<td></td>
<td>Intermediate switch</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
List of Physical Quantities and Their Symbols

<table>
<thead>
<tr>
<th>Name of Quantity</th>
<th>Symbol</th>
<th>Name of Quantity</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Quantities:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>P</td>
<td>Efficiency</td>
<td>η</td>
</tr>
<tr>
<td>Electric Current</td>
<td>I</td>
<td>Pressure</td>
<td>ρ</td>
</tr>
<tr>
<td>Length</td>
<td>L</td>
<td>Specific Heat Capacity</td>
<td>c</td>
</tr>
<tr>
<td>Mass</td>
<td>m</td>
<td>Heat Capacity</td>
<td>C</td>
</tr>
<tr>
<td>Celsius</td>
<td>θ</td>
<td>Wavelength</td>
<td>λ</td>
</tr>
<tr>
<td>Kelvin</td>
<td>T</td>
<td>Period</td>
<td>T</td>
</tr>
<tr>
<td>Time:</td>
<td>t</td>
<td>Amplitude</td>
<td>a</td>
</tr>
<tr>
<td>Frequency</td>
<td>f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Derived Quantities:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>V</td>
<td>Electric Intensity or Field Strength</td>
<td>E</td>
</tr>
<tr>
<td>Area</td>
<td>A</td>
<td>Potential and Potential Difference</td>
<td>V</td>
</tr>
<tr>
<td>Angle</td>
<td>θ</td>
<td>Electric Current</td>
<td>I</td>
</tr>
<tr>
<td>Density</td>
<td>ρ</td>
<td>Electro-Motive Force</td>
<td>E, \mathcal{E}</td>
</tr>
<tr>
<td>Relative Density</td>
<td>ρ_r</td>
<td>Resistance</td>
<td>R</td>
</tr>
<tr>
<td>Force</td>
<td>F</td>
<td>Weight (Gravitational Force)</td>
<td>W</td>
</tr>
<tr>
<td>Moment of Force or Torque</td>
<td>T</td>
<td>Acceleration Due to Gravity</td>
<td>g</td>
</tr>
<tr>
<td>Displacement</td>
<td>s, x</td>
<td>Mass of Electron</td>
<td>m_e</td>
</tr>
<tr>
<td>Energy</td>
<td>E, W</td>
<td>Charge of Electron</td>
<td>e</td>
</tr>
<tr>
<td>Work</td>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Energy</td>
<td>E_{th}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SUGGESTED READING LIST

The following is a list of books and other printed material which may be used as resource material for the CXC Electrical and Electronic Technology Unit. The list is not exhaustive or prescriptive, but indicates sources which may be appropriate for use by teachers and students.

Green, D. C.

Hughes, E.

Morris, M

Morley A; Hughes, E; Bolton, W

Shelton, C.

Steinberg, William B.; Ford, Walter B.
Electricity and Electronics – Basic, 1972. Chicago, American Technical Society,

Thompson, F.G.
Electrical Installation and Workshop Technology, Longman and ELBS

Local Electrical Code/Regulations
CARIBBEAN EXAMINATIONS COUNCIL

ELECTRICAL & ELECTRONIC TECHNOLOGY

SCHOOL-BASED ASSESSMENT CANDIDATES' RECORD SHEET

SCHOOL: _______________________________________ INSTRUCTOR: _______________________________________

TERRITORY: _____________________________________ PROFICIENCY: BASIC / TECHNICAL

This Record Sheet is to be returned to the Local Registrar
in time to be forwarded to CXC by April 30 in the year of the examination

<table>
<thead>
<tr>
<th>LABORATORY EXERCISES</th>
<th>PRACTICAL ASSIGNMENT</th>
<th>WRITTEN ASSIGNMENT</th>
<th>GRAND TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Mark</td>
<td>8 26 22 8 11 15</td>
<td>90 05 10 10 05 30</td>
<td>120</td>
</tr>
</tbody>
</table>

CANDIDATE NAME/REGISTRATION NUMBER

Head of Department: ___________________________ Principal: ____________________________ Date: ____________

CXC /13/T/SYLL 00

41
UNIT 2: MECHANICAL ENGINEERING TECHNOLOGY

GENERAL OBJECTIVES

1. To help students acquire the knowledge, skills and attitudes needed for employment at the entry level and as prerequisites for tertiary education and training in the Mechanical Engineering industry.

2. To help students acquire practical experiences which will enable them to develop skills in the use of tools, materials and processes associated with the Mechanical Engineering industry.

3. To help students develop skills in planning and designing through appropriate problem-solving activities.

4. To help students adopt good safety, health and environmental practices.

5. To help students appreciate the importance of engineering codes and specifications.

6. To inculcate in students an appreciation of the role of the Mechanical Engineering industry in the socio-economic development of their country.

7. To provide students with the fundamentals of the computer and its application as it relates to the Industrial Technology programme.

MODULE B1: SAFETY, HEALTH & WELFARE

MODULE B2: MACHINE TOOLS

MODULE B3: BENCH WORK/HAND TOOLS

MODULE B4: LAYOUT, MEASUREMENT AND TESTING

MODULE B5: SHEET METAL FABRICATION

MODULE B6: MACHINE DEVICES

MODULE B7: PREVENTATIVE MAINTENANCE

MODULE B8: ENGINEERING DESIGN

MODULE B9: METALLURGY

MODULE B10: INTRODUCTION TO COMPUTER

MODULE B11: CAREER OPPORTUNITIES
MODULE B1: SAFETY, HEALTH & WELFARE

B1.1: General Health and Safety Procedures
B1.2: Appropriate Health and Safety Equipment, Gear and Accessories
B1.3: First Aid
B1.4: Safe and Healthy Working Environment
B1.5: Accident Reports

MODULE B2: MACHINE TOOLS

B2.1: Drill Press
B2.2: Centre Lathe
B2.3: Bench and Pedestal Grinder
B2.4: Power Saw
B2.5: Special Machine Tools
 - Milling machine
 - Surface grinder
 - Simple theory of cutting tools

MODULE B3: BENCH WORK/HAND TOOLS

B3.1: Cutting and Filing Metals
B3.2: Chisels
B3.3: Drilling
B3.4: Screw Cutting by Hand
B3.5: Engineering Fasteners

MODULE B4: LAYOUT, MEASUREMENT AND TESTING

B4.1: Use and Care of Instruments/Tools

MODULE B5: SHEET METAL FABRICATION

B5.1: Pattern Development and Layout
B5.2: Cutting Sheet Metal
B5.3: Bending and Forming Sheet Metal
B5.4: Seams and Edges
B5.5: Fastening Sheet Metal
 \| B5.6: Art Metalwork \|

MODULE B6: MACHINE DEVICES

B6.1: Keys, Shafts and Couplings
B6.2: Bearings
B6.3: Belts
B6.4: Chains
B6.5: Gears
B6.6: Seals
MODULE B7: PREVENTATIVE MAINTENANCE

B7.1: The Reasons for the PM Programme
B7.2: Setting up of a PM Programme
B7.3: Planned Maintenance Schedule (PMS)
B7.4: Lubrication

MODULE B8: ENGINEERING DESIGN

B8.1: Engineering Design, Principles and Methodology

MODULE B9: METALLURGY

B9.1: Heat Treatment
B9.2: Thermal Joining Processes (Soldering, Brazing, Welding)
B9.3: Foundry
B9.4: Forge
B9.5: Materials

MODULE B10: INTRODUCTION TO COMPUTER

B10.1: Basic Computer Appreciation
B10.2: Operating the System
B10.3: Basic Programming Packages
B10.4: Computer Applications

MODULE B11: CAREER OPPORTUNITIES

B11.1: Careers in Mechanical Engineering Technology and Other Related Fields
B11.2: Professional Ethics and business Norms

FORMAT OF EXAMINATION

The format of the examination for the Mechanical Engineering Technology Unit is:

Paper I
A 60-item multiple-choice paper testing the theoretical aspects of the Unit. Knowledge and Application will be tested in the ratio of 1:1. The paper will be worth 60 marks.

Paper II
A free response paper divided into three sections. Each question will receive equal weighting for the profile dimensions, Knowledge and Application.

- **Section A**
 One compulsory design question based on Module B8 of the Unit. The question will be worth 40 marks. Candidates should spend approximately 50 minutes on this question.

- **Section B**
 Five questions based on Modules B2 to B5 of the Unit. Candidates are required to answer three questions. Each question will be worth 20 marks.
Section C Three questions based on Modules B6, B7 and B9 of the Unit. Candidates are required to answer one question. The question will be worth 20 marks.

Paper III Candidates are required to complete two assignments during terms 4 and 5 (Terms one and two of the examination year). Each candidate is required to complete:

i) one practical project to be selected from a list of three published by CXC. This will be worth 90 marks for the profile dimension Practical Ability.

iii) a written assignment set by CXC based on Module B11: Career Opportunities. This will be worth 30 marks for the profile dimension Practical Ability.

Details of the SBA component are on pages 71-73.

Suggested Timetable Allocation

It is recommended that a minimum of six hours per week should be timetabled for the Mechanical Engineering Technology Unit. The recommended division is:

Theory - 1 double period and 1 single period (2 hours per week)
Practical (Laboratory) - 2 triple periods (4 hours per week)

Based on a 35 weeks’ year, the total allocation recommended is 420 over the two-year period.

Notes

An additional 10 minutes reading time will be allowed for Paper II. The total time for Paper II will therefore be 2 hours and 40 minutes. No writing must be done during the 10 minutes reading time.

The use of calculators will be permitted in the examination.

ALLIED SUBJECTS

Students should be encouraged to include the following subjects in their programme of study: English A, Mathematics, Technical Drawing (with Mechanical Engineering Option), and one of Physics, Chemistry or Engineering Science.
B1.1: GENERAL HEALTH AND SAFETY REQUIREMENTS AND PROCEDURES

The students should be able to:

1. identify personal and general safety requirements governing workshops and worksites;

 Requirements as prescribed through rules and regulations for the country.

2. follow safety procedures based on rules and regulations for workshop and worksite;

 List of rules/regulations. Procedures for specific rules and regulations in booklets, charts diagrams, video tapes.

B1.2: APPROPRIATE HEALTH AND SAFETY MATERIALS, TOOLS, EQUIPMENT, GEAR AND ACCESSORIES

The student should be able to:

1. define safety materials, tools, equipment, gears, accessories;

 Types of safety materials, tools, equipment, gear, accessories.

2. identify the common safety gears, tools, equipment, materials and accessories for safe use;

 Clothing; foot, hand and head, others. Metalwork tools/equipment, ladders, scaffolding, heavy items, flammable and other materials.

3. demonstrate the safe use of materials, tools, equipment and accessories;

 Types, accessories, procedures, maintenance.

4. identify the different types of fires;

5. Operate a fire extinguisher.

 Types of fires and fire extinguishers; Procedures to use fire extinguishers. Maintenance of fire extinguishers.

B1.3: FIRST AID

The student should be able to:

1. define accident, injury, emergency;

 Types of accidents, injuries, emergencies.

2. describe how to get professional help when an accident occurs;

 Requirements and procedures to be followed after an accident.

3. explain how to apply first aid on an injured person while waiting for professional help.

 Contents of First Aid Kit.
B1.4: SAFE AND HEALTHY WORKING ENVIRONMENT

SPECIFIC OBJECTIVES

The student should be able to:

1. identify hazards, safe workstations, waste disposal, and hygienic practices;

2. identify practices at the workstation/site with reference to the following:
 - a) familiarity with area(s);
 - b) knowledge of hazards;
 - c) maximization of resources;
 - d) proper cleaning and maintenance schedule;
 - e) suitable work and maintenance procedures/method;
 - f) storage and space utilization;
 - g) suitable behaviour patterns;
 - h) correct methods of waste disposal;
 - i) rules, regulations, specifications;
 - j) assessment and record recycling;

3. perform mock drills for emergencies.

CONTENT

Types of work environment, hazardous situations, disposals.

Hygienic practices and requirement

Knowledge of the environment and hazards; safe storage of materials and supplies, maintenance of tools, equipment and machine.

B1.5: ACCIDENT REPORTS

SPECIFIC OBJECTIVES

The student should be able to:

1. identify types of accidents, injuries and emergencies;

2. describe the procedures followed in dealing with an accident;

3. prepare an accident report which identifies the cause of the accident.

CONTENT

Differentiate accidents, injuries, and emergencies.

Schedules and procedures.

B1.6: MAINTENANCE OF COMMON HAND TOOLS

SPECIFIC OBJECTIVES

The students should be able to:

1. **maintain, clean and inspect** common hand tools;
2. **describe the correct operational uses for such tools.**

CONTENT

Hacksaw, files, cold chisels, scriber, hammer, snips, callipers, mallet, screwdriver, stainless steel rule, wrench, tap & die, punches.

MODULE B2: MACHINE TOOLS

B2.1: DRILL PRESS

The student should be able to:

1. **state and apply safety precautions** to be observed when using the drill press;
2. oil and maintain the drill press;
3. identify drill parts and angles;
4. set up drill press vice;
5. set up work in vice;
6. calculate and select machine speeds and feeds;
7. layout work for drilling;
8. set up work with different clamps and fittings;
9. perform the following operations on the drill press: ream, counter-bore, countersink, drill, spot face;
10. **fit and remove tapered shank drills.**

B2.2: THE CENTRE LATHE

SPECIFIC OBJECTIVES

(A) TURNING WITH CHUCKS AND BETWEEN CENTRES

The student should be able to:

1. state safety precautions to be observed when using the centre lathe;
 - Safety precautions associated with operation of the centre lathe.
2. apply safety precautions associated with operations on the lathe;
3. locate and drill centre hole on stock;
 - Centre lathe: types, parts and oiling schedule. Combination centre drill.
4. identify tool bit types, materials and angles;
5. set tool bit for turning;
6. check centres for alignment;
7. mount work between centres;
8. calculate and set machine for correct speed and feed;
 - Cutting speeds for different materials and calculation of spindle speeds.
9. turn between centres (rough and finished cuts);
 - Appropriate coolants or cutting fluids for use with different materials.
10. identify grades of oil;
 - Grades of oil.
11. oil and maintain lathe;
12. mount and dismount various chucks;
 - Types of chucks: 3-jaw Universal, 4-jaw independent, collet, multi-size.
B2.2: THE CENTRE LATHE

CONT'D

SPECIFIC OBJECTIVES

The student should be able to:

13. mount work in various chucks;
14. face work in chuck;
15. calculate tapers;
16. cut taper using compound slide;
17. cut a shoulder and/or recess on work in the chuck;
18. turn work in the chuck;
19. turn work held in the chuck supported by tailstock;
20. part off work piece.

CONTENT

Taper turning using compound slide, taper attachment, offset centre and form tool.

(B) DRILLING

21. drill hole with tapered shank drill in tailstock;
22. drill with straightshank bit held in a Jacob’s chuck;
23. ream with reamer held in tailstock;

(C) THREAD CUTTING

24. use handbook or tables to select gear train;
25. cut external threads using stock and die;
26. cut internal threads using tap;

Parts of a drill – size of pilot holes.

Types of reamer – allowance for reaming after drilling.

Comparison of angles and forms; calculation of simple and compound gear train. Screw threads, terms and definition: major and minor diameters, pitch, lead, root, crest.

Metric/imperial threads.
B2.2: THE CENTRE LATHE CONT'D

SPECIFIC OBJECTIVES

The student should be able to:

(D) SPECIAL OPERATIONS

27. identify the face plate to be used for work piece;

28. fit and cut work on mandrel;

29. turn work piece on mandrel;

30. set up and turn work with fixed and travelling steadies;

31. knurl work;

32. counterbore work in lathe using a drill.

CONTENT

Face plate, angle plate, clamps and fixtures.

Compound rest - adjustment. Kinds of mandrels: solid and expansion.

Counterboring tools. Tools post grinder.

Steady and follower rest: parts and uses.

Knurling tools.

Blind holes.

B2.3: BENCH AND PEDESTAL GRINDER

The student should be able to:

1. state and apply appropriate safety precautions to bench and pedestal grinding operations;

2. select appropriate wheel for material being ground;

3. mount wheel in correct position;

4. dress wheel.

CONTENT

Safety precautions associated with bench and pedestal grinders.

Types of wheel. Mounting of wheels. Balancing of wheels.

Setting of tool rest.

Wheel dressers.
B2.4: POWER SAW

SPECIFIC OBJECTIVES

The student should be able to:

1. state and apply safety precautions to be observed when using the power saw;
2. identify the parts of the power saw;
3. set up work and select speeds and feeds;
4. perform the following operations on the power saw: square cutting, angular cutting.

CONTENT

- Safety precautions associated with the operations of the power saw.
- Types, parts of feed and cutting speed, drive, vises, saw blades and their selection.
- Holding devices.
- Procedures for square and angular cutting; speeds for mild steel, cast iron, high speed steel; wet cutting, dry cutting.

B2.5: SPECIAL MACHINES TOOLS (MILLING, SURFACE GRINDER)

The student should be able to:

(A) THE MILLING MACHINE

1. state and apply appropriate safety precautions to be observed when using the milling machine;
2. oil and maintain milling machine;
3. select cutter for simple operations;
4. calculate and select cutting speed for size of cutter and material of work piece;
5. calculate and select rates of feed;
6. mount and dismount cutters on spindle;
7. mount work in vice and check for parallelism;

- Safety precautions associated with the operation of the milling machine.
- The milling machine: parts of, oiling schedules.
- Plain and End Mill, Cutters, Arbors.
- Comparison of cutting speeds for materials used in the school laboratory.
- Use of dial indicator to test parallelism.
Specific Objectives

The student should be able to:

8. adjust table for travel and depth of cut;
 - Use of calibrated dial.

9. choose correct coolants and cutting fluids;
 - Appropriate coolants or cutting fluids for use with different materials.

10. surface-mill work on horizontal/vertical milling machines;
 - Up-cut (conventional) and down-cut (climb) milling.

11. calculate for simple indexing.
 - Dividing head principle. Simple indexing.

Surface Grinder

12. list safety precautions associated with surface grinding;
 - Safety precautions associated with the operations of the surface grinder.

13. list steps for setting up on machine table;
 - Work holding device.

14. calculate speeds and feeds;
 - Speeds and feeds

15. select appropriate coolants.
 - Types of coolants.

Simple Theory of Cutting Tools

16. list safety considerations in handling chip removal operations;
 - Safety in chip removal operation.

17. explain function of rake and clearance angles for cutting different materials with different cutting tools;
 - Tool angles.

18. explain techniques of sharpening tools to control chips;
 - Chip formation and chip control.

19. identify forces at tool point;
 - Elementary treatment of forces at the tool point.

20. list factors affecting the life of a cutting tool.
 - Tool life. Coolants and lubricants.
MODULE B.3: BENCH WORK/HAND TOOLS

B3.1: CUTTING AND FILING METALS

SPECIFIC OBJECTIVES

The student should be able to:

1. use and care for bench tools used in sawing, chiselling and filing operations;
2. hold and clamp work in vice;
3. cut metal with hacksaw, power saw and junior hacksaw;
4. cut thin wall tubing;
5. cut corners on light and heavy gauge metals;
6. chip metal with cold chisels;
7. shear metal in vice with flat chisel;
8. cut groove with a cape or round nose chisel;
9. sharpen cold chisels;
10. identify and select appropriate files for a job;
11. file flat, concave and convex surfaces;
12. cross file metal;
13. draw file metal;
14. test surface for flatness and squareness;
15. polish metal.

CONTENT

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Safety precautions associated with the use of bench tools.</td>
</tr>
<tr>
<td>2.</td>
<td>Bench vice: parts and uses. Vice caps/soft jaws.</td>
</tr>
<tr>
<td>3.</td>
<td>Handsaws and power saw: parts and blades.</td>
</tr>
<tr>
<td>6.</td>
<td>Files-classification: machinist, swiss pattern, special purposes; shapes – flat, square, three square, round, half round.</td>
</tr>
</tbody>
</table>
B3.2: DRILLING

SPECIFIC OBJECTIVES

The student should be able to:

1. state and apply safety precautions for drilling operations;
2. prepare metal for drilling;
3. select appropriate work holding device;
4. drill holes in metal;
5. drill pilot holes;
6. countersink holes.

CONTENT

Safety precautions associated with drilling operations.

Drills – parts of a drill, sizes of drills, use of centre punch and drill gauge.

Important factors in drilling: correct machine, proper clamping device, correct speeds and feeds.

Countersink drill: method of laying out for countersinking.

B3.3: SCREW CUTTING BY HAND

The student should be able to:

1. state and apply safety precautions to be observed when cutting threads by hand;
2. identify and cut external threads with dies;
3. cut pipe thread;
4. cut internal threads with taps;
5. select appropriate drill from tap drill tables or by calculations;
6. check threads.

CONTENT

Safety precautions associated with screw cutting operations.

Screw threads: terms and definition, forms of screw threads. Types of dies.

Screw pitch gauge.
B3.5: ENGINEERING FASTENERS

SPECIFIC OBJECTIVES

The student should be able to:

1. lay out work for riveting;
2. rivet metals;
3. fasten materials with machine screws, nuts and bolts;
4. join metal by hard and soft soldering;
5. use wrenches.

CONTENT

Safety precautions associated with fastening.
Types of rivets: rivet sets and snaps, blind rivets.
Types of machine screws: flat head, round head, hexagonal, square, socket heat. Principles underlying all operations of fastening and assembling metals.
Hard and soft soldering.
Types of wrenches: Monkey, stilston, double end, single end, adjustable, allen, toolpost.

MODULE B4: LAYOUT, MEASUREMENT AND TESTING

B4.1: USE AND CARE OF INSTRUMENTS/TOOLS

The student should be able to:

1. use and care of measuring and layout tools in a safe way;
2. check for flatness and squareness in work pieces;
3. measure round and hollow stock using calipers, and micrometers;
4. measure and layout from datum;
5. measure angles;
6. layout flat work;

CONTENT

Safety precautions and care associated with the use of measuring and layout tools used in performing Bench Metal operations.
Checking tools: engineer’s square, combination set, surface plate, surface gauge, dial gauge, straight edge.
Layout tools: surface plate, angle plate, surface gauge, height gauge, depth gauge, scribers, prick punch, centre punch, ball pein hammers, dividers, trammels, vee-block, block rule, hermaphrodite/odd leg callipers combination set, bell punch. Layout fluids: preparation and application.
B4.1: USE AND CARE OF INSTRUMENTS/TOOLS CONT'D

SPECIFIC OBJECTIVES

The student should be able to:

7. read simple blueprint drawings;

8. work to tolerances of 0.1 mm or imperial equivalent;

9. make templates;

10. transfer design to work pieces;

11. layout duplicate pieces;

12. find centre of round stock;

13. layout round stock;

14. inspect work for accuracy of dimension and form;

15. sharpen layout tools.

CONTENT

Testing tools: squares, feeler, plug and gap gauges, dial test indicator.
Elementary treatment of limits and fits: clearance, transition, interference.

Scribers, prick punch, centre punch.

MODULE B5: SHEET METAL FABRICATION

B5.1: PATTERN DEVELOPMENT AND LAYOUT

The student should be able to:

1. state and apply safety precautions to be observed when doing sheet metal work;

2. measure and layout work;

3. layout from a datum and a centre line;

4. make and use simple templates;

Safety precautions associated with sheet metal operations.

Layout and measuring tools: prick punch, centre punch, scribers, dividers, rule, hammer, mallet, and metal gauge, scratch awl, trammels.

Common sheet metals i.e galvanised, tin plate, aluminium and copper. Pattern development: radial line, parallel lines, simple triangulation.
B5.1: PATTERN DEVELOPMENT AND LAYOUT CONT'D

SPECIFIC OBJECTIVES

The student should be able to:

5. layout and develop patterns for cylindrical and conical work;

6. layout patterns for transitional pieces.

CONTENT

B5.2: CUTTING SHEET METAL

The student should be able to:

1. cut sheet metal with hand shears or snips and foot-operated shears;

2. cut a notch or corner;

3. punch holes in sheet metal;

4. cut metal with a saw;

5. cut irregular shapes.

CONTENT

B5.3: BENDING AND FORMING SHEET METAL

The student should be able to:

1. bend sheet metal by hand and on a brake;

2. make angular bends;

3. bend metal on the bar folder;

4. form bend with bending machine;

5. form cylinders and cones on the slip-roll forming machine;

6. form metal using stakes.

CONTENT

B5.4: SEAMS AND EDGES

SPECIFIC OBJECTIVES

The student should be able to:

1. make seams and wired edges for sheet metal work;
2. fold an edge on a bar folder or box and pan brake;
3. calculate allowances for making seams and wired edges.

CONTENT

Calculation of length of material for edge.

B5.5: FASTENING SHEET METAL

The student should be able to:

1. fasten sheet metal;
2. tin soldering copper;
3. solder seams or joints;
4. sweat solder joints;
5. fit bottoms to projects;
6. reshape soldering copper;
7. adjust and maintain sheet metal machines.

Bolts and nuts, screws, pins and rivet. Solder and fluxes: types and form of supply, soldering devices and appliances.

Types of soldering joints.

B5.6: ART METALWORK

The student should be able to:

1. roll and shape ornamental metal into various shapes.

Materials: gold, silver, aluminium, copper, brass.

Process: hammering, welding, soldering, rolling.
MODULE B6: MACHINE DEVICES

B6.1: KEYS, SHAFTS AND COUPLINGS

SPECIFIC OBJECTIVES

The student should be able to:

Keys

1. describe the types of keys commonly used in couplings;
 - Square key, boxed key. Gib-headed key, tapered key, woodruff key.

2. select keys suitable for different mechanical drives;

Shafts

3. describe the types of shafts commonly used in making couplings;
 - Types of shafts: axle, spindle, journal

4. explain the factors affecting the good working order of shafts;

Couplings

5. describe the types of couplings commonly used to transmit power from one machine shaft to another.
 - Rigid couplings, flexible couplings

B6.2: BEARINGS

The student should be able to:

1. identify the types of friction bearings commonly used to reduce friction;
 - Friction bearings:
 - plain
 - sleeve
 - journal

2. give specifications and typical application of anti-friction bearings;
 - Anti-friction bearings:
 - ball
 - rollers
 - needle

3. give specifications and typical application of friction bearings.

B6.3: BELTS

The student should be able to:

1. list the three common types of belt drives;
 - Flat belts
 - V-belts
 - Positive drive belts

2. explain the function of different types of belts;

3. describe the various shapes for different belt application.
B6.4: CHAINS

SPECIFIC OBJECTIVES

The student should be able to:

1. identify situations where chain drives would be used.

CONTENT

Chain drive machine application.

B6.5: GEARS

The student should be able to:

1. explain the purposes of gear drives;

2. describe the factors considered in the selection of gear type and gear material;

3. identify the different types of gear and the purpose for which they are applicable.

CONTENT

Gears and drives.

Gear types, gear materials, gear function.

Spur, bevel, helical, Rack and Pinion.

B6.6: SEALS

The student should be able to:

1. explain the purpose of seals;

2. explain the different types of seals commonly used;

CONTENT

Mechanical and gasket/synthetic seals.

MODULE B7: PREVENTATIVE MAINTENANCE

B7.1: THE REASONS FOR PREVENTATIVE MAINTENANCE (PM) PROGRAMME

The student should be able to:

1. list the six functions of a typical PM programme;

2. list the major benefits of a PM programme;

3. describe the steps involved in the PM planning process.

CONTENT

Routine maintenance.

PM functions:

- inspecting
- lubricating
- replacing
- cleaning
- adjusting
- testing
B7.2: SETTING UP A PM Programme

SPECIFIC OBJECTIVES

The student should be able to:

1. describe the elements needed to establish a PM programme;
2. distinguish between preventative and predictive maintenance programme;
3. prepare a PM inspection checklist.

CONTENT

Elements of PM system preventive VS predictive maintenance.

B7.3: PM Schedule

The student should be able to:

1. prepare a PM schedule;
2. make a list of all the activities for a weekly schedule.

CONTENT

PM schedule

B7.4: Lubrication

The student should be able to:

1. explain the function of lubrication for friction reduction;
2. state the properties of oil important to the lubrication process;
3. state the different methods of the application of lubrication.

CONTENT

Kinds of friction.

Properties of oil; properties of grease.

Methods of lubrication.
MODULE B8: ENGINEERING DESIGN

B8.1: ENGINEERING DESIGN, PRINCIPLES AND METHODOLOGY

SPECIFIC OBJECTIVES

The student should be able to:

1. design simple projects to be constructed in the workshop;

2. identify basic constructional features of machines and tools used in the metal-working laboratory;

3. identify functional features and mechanisms of hand tools and machines used in the metalworking laboratory;

4. identify methods of assembly of machines in the metalworking laboratory;

5. identify adjustment for wear in moving parts of common metalworking machines;

6. produce neat representative sketches of design ideas in good proportion;

7. investigate, analyse and solve design problems from general information.

CONTENT

Planning. Trend in design of metal products. Use of non-metallic materials such as wood, plastics, ceramics, rubber is permitted. Consideration of principles of construction in the design of metal products.

Relation of design to material utility as a basis of good design. Study of principles of simple mechanisms, basic constructional features and materials employed in:

(a) simple components or units as made in the laboratory.

(b) function of principal machine tool parts or common items of equipment used during the course.

Design industry: production methods and their effects on design. Evaluation of design: Function, durability, economy, material, construction, beauty and strength.
MODULE B9: METALLURGY

B9.1: HEAT TREATMENT

SPECIFIC OBJECTIVES

The student should be able to:

1. heat treat metals for specific purposes;
2. explain with reference to the iron-carbon diagram the heat treatment processes of plain carbon steel;
3. explain the process of annealing copper;
4. explain the case hardening of plain carbon steel.

CONTENT

Heat treatment of metals: grain structure, annealing, hardening, tempering, normalising, case hardening. Heat source; flame, gas and electric furnace.

Work hardening. Recrystallization.

Case hardening: (solid, liquid and gas) of low carbon steel. Induction and flame hardening.

B9.2: THERMAL JOINING PROCESSES (SOLDERING, BRAZING, WELDING)

The student should be able to:

1. state the safety rules associated with the operations of soldering, brazing and welding;
2. apply safety rules associated with the operations of soldering, brazing and welding;
3. set up and perform soft soldering operations;
4. adjust and identify oxy-acetylene flames;
5. set up and perform hard soldering operations;

Safety rules associated with the operations of thermal joining processes.

Soft soldering. Fluxes - types and application, Lead/tin equilibrium diagrams.

Oxyacetylene flames. Their applications (neutral, oxidising, carbonizing).

Hard soldering, silver soldering.
B9.2: THERMAL JOINING PROCESSES (SOLDERING, BRAZING, WELDING) CONT'D

<table>
<thead>
<tr>
<th>SPECIFIC OBJECTIVES</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>The student should be able to:</td>
<td></td>
</tr>
<tr>
<td>6. set up and perform brazing operations;</td>
<td>Brazing; use of oxyacetylene torch.</td>
</tr>
<tr>
<td>7. set up and perform basic welding operations using oxy-acetylene equipment;</td>
<td>Gas welding. Cylinder, regulators, torches, welding tips.</td>
</tr>
<tr>
<td>8. set up and perform basic welding operations using electric arc welding equipment;</td>
<td>Arc welding. Rods; AC/DC current. Arc and beads; welded joints.</td>
</tr>
<tr>
<td>9. identify and correct welding defects;</td>
<td>Welding defects for example, blow holes, warping, under-cutting, porosity, slag inclusion, poor fusion.</td>
</tr>
<tr>
<td>10. prepare a variety of joints for welding.</td>
<td>Basic welding joins for example, butt, single bevel T, double bevel T, single V butt, lap, edge.</td>
</tr>
</tbody>
</table>

B9.3: FOUNDRY

<table>
<thead>
<tr>
<th>SPECIFIC OBJECTIVES</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>The student should be able to:</td>
<td></td>
</tr>
<tr>
<td>1. list safety precautions appropriate to foundry work;</td>
<td>Safety precautions associated with foundry.</td>
</tr>
<tr>
<td>2. list steps or procedure for sand casting;</td>
<td>Sand casting.</td>
</tr>
<tr>
<td>3. compare different casting processes in terms of materials and size of components.</td>
<td>Sand casting and die casting equipment and material. (This may be descriptive and include field trips).</td>
</tr>
</tbody>
</table>

B9.4: FORGE

<table>
<thead>
<tr>
<th>SPECIFIC OBJECTIVES</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>The student should be able to:</td>
<td></td>
</tr>
<tr>
<td>1. state and apply safety precautions associated with forge work;</td>
<td>Safety precautions associated with the operation of the forge.</td>
</tr>
<tr>
<td>2. heat work to appropriate forging temperatures;</td>
<td>Colours in forging and their equivalent degree of temperature.</td>
</tr>
</tbody>
</table>
B9.4: FORGE CONT'D

SPECIFIC OBJECTIVES

The student should be able to:

1. List the sources of ferrous metals;
2. Explain briefly the methods of production of ferrous metals (iron and steel);
3. Identify the properties of ferrous metals;
4. Select and use various forms of ferrous metals;
5. Identify steels by various tests;
6. List sources of non-ferrous metals;
7. Identify and select forging tools;
8. Draw down, round and square bars;
9. Bend metal in the vice, over the face or bick of the anvil and with horns and wrenches;
10. Form an eye;
11. Upset or jump up ends of stock;
12. Swage and fuller metal;
13. Make twists on square stocks.

CONTENT

- Forge terms: drawing down, drawing out, spreading, upsetting, forging, fullering, swaging.

B9.5: MATERIALS

The student should be able to:

1. List the sources of ferrous metals;
2. Explain briefly the methods of production of ferrous metals (iron and steel);
3. Identify the properties of ferrous metals;
4. Select and use various forms of ferrous metals;
5. Identify steels by various tests;

Ferrous Metals

- Types and sources of iron ore.
- Production of ferrous metals and their alloys. Furnaces used – Blast, Bessemer, Open Hearth, Electric, Crucible, Basic Oxygen, Cupola.
- Properties of steel: malleability, ductility, hardness, toughness, plasticity, elasticity.
- Cast iron, low, medium and high carbon steels, alloying elements in steel: tungsten, molybdenum, vanadium, nickel, chrome. Classification and commercial forms and supply of steel.
SPECIFIC OBJECTIVES

The student should be able to:

1. explain methods of production of non-ferrous metals;
2. identify properties of non-ferrous metals;
3. select and use various forms of non-ferrous metals;
4. select and use various forms of plastics;
5. identify properties of various plastics and other non-metallic materials.

CONTENT

Metals identification by various test: spark, oxyacetylene torch, colour, fracture, density or specific gravity, ring or sound of metal upon impact with other metals, chip, heat, file.

Non-Ferrous Metals

Sources of non-ferrous metals; aluminium, copper, lead, tin, zinc.

Production of non-ferrous metals with special emphasis on aluminium.

Corrosion resistance, conductivity, age, hardening.

Uses of non-ferrous metals: aluminium, copper, lead, tin, zinc.

Alloys. Classification and commercial forms of non-ferrous metals.

Non-Metallic Materials

Polymers and co-polymers.

Thermosetting
- urea formaldehyde
- phenol formaldehyde (bakelite)
- styrene resins
Thermoplastics
- Nylon
- Teflon
- Polystyrene
- PVC
- Tufnol, Lignum vitae as a bearing material
MODULE B10: INTRODUCTION TO COMPUTER

B10.1: BASIC COMPUTER APPRECIATION

SPECIFIC OBJECTIVES

The student should be able to:

1. list the various parts that make up a computer system.

CONTENT

Input and output devices, storage devices, control processing unit, system software, application software, computer networks, protective devices: voltage regulator, surge protector, UPS.

B10.2: OPERATING THE SYSTEM

The student should be able to:

1. identify the steps involved in operating the computer system.

CONTENT

Boot up the system; format a blank disk; back up data; software application; copy files; file management; DOS Windows, Mac OS.

The student should be able to:

B10.3: BASIC SOFTWARE PACKAGES

1. perform simple tasks using commonly available applications.

CONTENT

Windows; productivity tools: Wordprocessing, Spreadsheet, Data Base Management, AutoCad, Graphic Packages.

B10.4: COMPUTER APPLICATIONS

The student should be able to:

1. list the many uses of the computer in Industry;

CONTENT

Accounting/financial applications; human resource applications; material/inventory management; process control; robotics; decision support system; research and development, CAD/CAM, CNC.
MODULE B11: CAREER OPPORTUNITIES

B11.1: CAREERS IN MECHANICAL ENGINEERING AND OTHER RELATED FIELDS

SPECIFIC OBJECTIVES

The student should be able to:

1. list career opportunities in the Mechanical Engineering and related fields locally and regionally;

2. compare occupational profiles and descriptions of two occupations in the field of engineering;

3. identify opportunities/situations in your community/territory that may lead to employment or self-employment in Mechanical Engineering Technology or related fields;

4. source information on career opportunities in Mechanical Engineering Technology;

5. Prepare and write report/short paper on:
 a) industrial tours made;
 b) current innovations in the field of engineering;
 c) engineers, inventors or educators who have made significant contributions to the field of engineering.

CONTENT

<table>
<thead>
<tr>
<th>Fields:</th>
<th>Mechanical/Production Engineering, Industrial Engineering; Electrical/Electronic Engineering, Civil/Construction Engineering.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial or maintenance plants jobs.</td>
<td>Professional journals/organisations, internet, newspapers.</td>
</tr>
<tr>
<td>Visits to multinational, regional, national engineering and service companies.</td>
<td>Use of the computer in engineering.</td>
</tr>
<tr>
<td>Great inventors and engineers.</td>
<td></td>
</tr>
</tbody>
</table>
The student should be able to:

1. list work habits necessary for the development of good work attitudes;

2. identify education/training/qualification requirement for selected occupations in the field of Mechanical Engineering Technology;

3. specify duties and responsibilities for occupations related to Mechanical Engineering Technology;

4. demonstrate knowledge of business norms, regulations and codes.

- Code of ethics, punctuality, regularity, neatness, following instructions, safety, attitudes, tolerance, courtesy, human relations.

- Secondary education, practical experience and training certificate, Diploma, Associate Degree, Bachelor Degree.

- Duties and responsibilities of semi-skilled, skilled, supervisor, manager.

THE SCHOOL-BASED ASSESSMENT COMPONENT

RATIONALE

The School-Based Assessment component of the Mechanical Engineering Technology Unit will measure the practical skills not tested on the multiple choice and free response papers (Papers 1 and 2).

The assignments set for SBA are intended to deepen the students’ knowledge and help them achieve competency in skills required in the mechanical engineering industry and which are within the competence of secondary school candidates.

By focusing on processes as well as product, the SBA component will allow students to demonstrate improvement in skills over a period of time and for their teachers’ involvement in the assessment process.

REQUIREMENTS

Each candidate is required to complete a practical and a written assignment, during terms 4 and 5 of the two years’ course (Terms one and two of the examination year). The practical assignment is worth 90 marks and the written assignment is worth 30 marks.

Practical Assignment

For the practical assignment, candidates will be required to construct a project designed to utilise the skills and knowledge covered in the syllabus. Candidates should choose one project from a list of three provided by CXC and fulfil the requirements stated for the project. Projects may include the construction of a commercial nut cracker, foil compactor, drawing instrument kit, small bench grinder, chandelier, mail box or occasional lamp.

The project must NOT exceed the dimensions of 450 mm deep x 400 mm wide x 675 mm long, nor must it exceed a weight of 2kg. All dimensions for the project are in millimetres (mm) unless otherwise stated. Dimensions omitted are left to candidates’ discretion.

Each candidate is expected

i) to provide a plan sheet for the project which MUST include the following:
 a) drawings and/or sketches;
 b) steps of procedure;
 c) a bill of materials;
 d) a list of tools and equipment to be used.

ii) to construct a project

The particulars for the project must be approved by the teacher before any work is started on the project.
Written Assignment

The written assignment will take the form of a report of about 1000-1200 words based on the Core Module: Career Opportunities. Candidates must write on the topic set by CXC for each examination. The topic will be based on the themes in Module, i.e.

i) **Job Search**
 a) Jobs in the Mechanical Engineering industry (types, wages, other remuneration).
 b) Qualifications for the job (A class/B class/C class workers) or for apprentices and/or trainees.
 c) Type, availability and cost of training required: trade school, vocational/technical school, college or university.
 d) Desirable work habits and attitudes.
 e) Writing letters of application for various types of jobs (how to set out a CV).
 f) Interviewing skills.

ii) **Career Choice**
 a) Gathering information on careers (from libraries, labour offices, and internet).
 b) Writing profiles on different careers.
 c) Planning debates and lectures on different careers under the guidance of the teacher.
 d) Making and justifying a career choice.

iii) **Industrial Visits**
 a) Planned visits to industries, industrial sites. (These should include small, medium and large businesses). A good example is a small aluminium foundry where local entrepreneurs make coal pots, pots, and covers.
 b) Preparation of report on the visit: the report should include, where possible, sketches, drawings and photographs in addition to the written material.

iv) **Profile of Engineer or Inventor**
 a) Summary of biographical data.
 b) Major works/experiments/inventions and how these were validated.
 c) Evaluation/impact of individual’s contribution to the industry.

Candidates will be assessed on accuracy of information, clarity of presentation, the use of technical language and knowledge of career opportunities in the Mechanical Engineering industry as outlined in Common Module of the Unit.
ASSESSMENT OF ASSIGNMENTS

Teacher Assessment

The teacher will mark the assignments and submit the marks on the specified Assessment Sheet to the Local Registrar to reach the CXC Headquarters Office by April 30 in the year of the examination. Local Registrars will therefore set their own deadline date to fall prior to April 30. The assignments must be marked based on the mark allocation given in the Specimen SBA Candidates’ Assessment Sheet on page 80.

External Assessment

An external Assessor will visit each school twice during the final year. On the first visit he/she will assess the process of constructing the practical project and on the final visit he/she will reassess the completed project work already marked by the teacher. The visiting schedule will be agreed on by the Local Registrar, Principal and the Assessor.

Retention of Work

All projects are a part of the examination work and therefore will be considered the property of CXC. CXC will request from schools written projects identified by CXC. Projects remaining at the schools MUST be securely retained by the school administration on behalf of CXC until three months after the publication of examination results.

SBA materials

Be September 1 of each year, schools should receive from Local Registrars information on the SBA requirements for that academic year. This should include:

i) the practical projects set for that year with their assessment criteria and mark scheme and accompanying guidelines for their construction (one booklet per candidate);

ii) Project Plan Sheets (one per candidate);

iii) the list of topics for the written assignment;

iv) Record Sheets with mark allocation (one for 10 candidates);

v) a copy of the Moderator’s Rating Sheet (only for schools presenting candidates for the first time).

Materials for Projects

The materials specified by CXC in the SBA booklet should be used for the construction of projects wherever possible.

In cases where the materials specified for the construction of projects are scarce or expensive, suitable alternatives may be used. An explanatory report must be submitted by the teacher together with the Assessment Sheet to reach CXC Headquarters, Barbados by April 30 in the year of the examination.
Guidelines for Resit Candidates

Candidates who have obtained at least 50 per cent of the total SBA marks in their initial attempt will not be required to repeat this component of the examination provided that they rewrite the examination in the year immediately following the first sitting.

Such candidates should, on registration, indicate that they are resit candidates and give their registration number from the previous year.

Candidates who have obtained less than 50 per cent of the total SBA marks must repeat the SBA requirements set for Terms 4 and 5. Repeat candidates must be entered for the examination through an educational institution.
WORKSHOP/LABORATORY FACILITIES

Recommended equipment for a class of 16.
This list provided is for a general Mechanical Engineering laboratory for the syllabus sections identified.

Machine Shop

Lathe 9”/255mm swing, quick change gear box 36”/900mm bed pedestal base 1 (desirable)
Lathe 12”/300mm swing, quick change gear box, 48”/1200mm pedestal base 1 (desirable)

Recommended Accessories

Draw in Collet Chuck assembly (for 9”/225mm swing lathe) 2 sets
Independent four jaw and universal chucks 2 sets
(for 9”/225mm swing lathe) Sizes 6”/150mm 1 set
(for 12”/300mm swing lathe) Size 8”/220mm
Universal 3-jaw chuck Sizes 6”/150mm 2 sets
(for 9”/225mm swing lathe) Sizes 8”/200mm 1 set
(for 12”/300mm swing lathe)
Lathe Dogs with cranked on straight tails to suit driving plates provided with Lathes - 1
1/2”/13mm, 3/4”/16mm, 1”/25mm, 1 1/2”/30mm
Jacob’s Chuck 0” – 1/2”/13mm complete with taper shank and sleeve to fit tailstock 1
of both lathes
Tool holders – left, right and straight 2 sets
Fixed steady 2
Travelling steady 2
Knurling Tool, with coarse, medium and fine knurls (straight and diagonal) 2
Driving plates 2
Boring Bar with holder 2
Rotating centre with taper shank and sleeve 2
Parting Tool with holder 2
Threading tool 2
Metric Screw pitch gauge 1 set
Prepared tool bits 2 sets
Tool Blanks to fit tool holders 10 pieces
Live centres 2
Dead Centres 4
Face plate 8”/200mm 2

Additional Tools

Callipers - Outside 6”/150mm 3
Inside 6”/150mm 3
Hermaphrodite 6”/150mm 3
Rule Depth Gauge 1
Micrometers – 0 – 25mm 3
Vernier Calliper – 15cm 1
Surface Gauge with fine adjustment 3
Vee blocks with clamps 2 sets
Dial Test Indicator with magnetic base 2
Engineer’s Square 16cm 3
Dividers 15cm 2

CXC /13/T/ SYLL 00

75
Additional Tools Cont’d

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combination/Centre drill Nos. 1-5</td>
<td>2 sets</td>
</tr>
<tr>
<td>Lead Hammer/mallet</td>
<td>3</td>
</tr>
<tr>
<td>Precision Spirit Level</td>
<td>1</td>
</tr>
<tr>
<td>Rules, steel, 15cm</td>
<td>8</td>
</tr>
<tr>
<td>30 cm</td>
<td>8</td>
</tr>
</tbody>
</table>

Milling Machine

Universal model with longitudinal transverse and vertical feed, 1”/25mm arbor with collars and spherical nut, guard for cutters, micrometer collars graduated in metric measure.

Recommended Accessories

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assortment of cutters for horizontal and vertical milling</td>
<td>1 set</td>
</tr>
<tr>
<td>Machine vice (6” jaw)</td>
<td>1</td>
</tr>
</tbody>
</table>

Drill Press

Drill press 15”/375mm floor type, 0-1/2”/13mm Jacob’s chuck with tapered shank, drill drift.

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drill press vice - 4”/100mm jaw</td>
<td>1</td>
</tr>
<tr>
<td>G Clamps - 4”/100mm</td>
<td>4</td>
</tr>
<tr>
<td>G Clamps - 6”/150mm</td>
<td>2</td>
</tr>
<tr>
<td>Parallel Clamps</td>
<td>2</td>
</tr>
<tr>
<td>Countersink drills</td>
<td>2 sets</td>
</tr>
<tr>
<td>Centre Punches</td>
<td>10</td>
</tr>
<tr>
<td>Scribers</td>
<td>16</td>
</tr>
<tr>
<td>Drills (metric sizes) 3 - 13mm in steps of 0.2mm</td>
<td>2 sets</td>
</tr>
<tr>
<td>13 – 20m in steps of 0.5mm</td>
<td>1 set (desirable)</td>
</tr>
</tbody>
</table>

Grinders

Grinders, bench type mounted on pedestal with eye shields 8”/200mm wheels, 1/2-1 h.p.

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheel Dressers</td>
<td>1</td>
</tr>
<tr>
<td>Safety glasses</td>
<td>16</td>
</tr>
</tbody>
</table>

Additional

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil cans (pump type)</td>
<td>2</td>
</tr>
<tr>
<td>Safety rags bin</td>
<td>1</td>
</tr>
<tr>
<td>Grease gun</td>
<td>1</td>
</tr>
</tbody>
</table>

Shaper

Shaper 10”/250mm - 12”/300 stroke standard

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 (desirable)</td>
</tr>
</tbody>
</table>
Recommended Accessories

Tool holder - swivel 1
Vice - 4"/100mm jaws with swivel base 1
Vee Block with clamps 2
U Clamps and bolts 6

Horizontal Spindle Surface Grinding Machines

Table Travel - 18"/450mm (desirable)
Cross Feed - 8"/200mm (desirable)
1300mm Permanent Magnetic Chuck - 2" or 300 mm (desirable)

Bench Metal

Bench Vice 16
Tap and die set - 1/8"/3mm to 1/2"/12mm 1
3/8"/10mm - 3/4"/16mm (optional)
Chisels Cold - flat, cape, round nose, diamond 2 sets

Wrenches

Adjustable - 6"/150mm and 8"/200mm 1 each
Stilton - 8"/200mm and 14"/350mm 1 each
Hand Drill 0-1/4"/6mm 1
Toolmakers clamps 2
Hand vice 2
Vice Grip pliers (small) 1
Vice Grip pliers (large) 1
Files - assorted sizes and cuts
Needle files 1 set
File card 2
Hand lever shears to cut up to 1/8" material 1
Pliers - side cutting, diagonal, long nose 1 set
Feeler Gauge 1
Extractor Set 1
Drift Punch 1
Pin Punches 1 set

Sheet Metal

Bar Folder 24"/600mm slip roll forming machine with rollers for wire edged 1 each (desirable)
24"/600mm rollers
Pan and box brake (24") 1

Stakes

Solid Mandrel 1
Hatchet 1
Creasing 1
Bick Iron 1
Stakes Cont’d

Square Head
Round Head
Bench Bar for stakes in use

Soldering

Soldering Furnace (gas operated)
Square Pointed copper 16 oz
Electric Soldering Iron

Snips

Straight 6"/150mm – 10"/250mm
Curved 6"/150mm – 10"/250mm
Combination 6"/150mm - 10"/250mm

Saws

Hacksaw - 12"/300 mm
Sheet metal hacksaw
Jeweller’s saw
Junior hacksaw

Hammers

Ball Pein – 16 oz
Ball Pein – 8 oz
Cross Pein – 12 oz
Cross Pein – 8 oz
Straight Pein

Mallets

Rawhide
Rubber
Boxwood, bossing
Raising

Screwdrivers

Phillips head (small, medium, large)
Standard (small, medium, large)

Additional

Hand groovers – assorted sizes
Hand seamers 3"/75mm jaws
Scroll former
Radius Gauge
Wire Gauge
Air Acetylene Torch

1
1 pair
2
6
2
2
3
2
2
2
2
2
3
2
1 each
2
3
2
1 (optional)
1
1 (optional)
Forgework

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forge</td>
<td>1 (optional)</td>
</tr>
<tr>
<td>Anvils - 112 lbs. on stand</td>
<td>2</td>
</tr>
<tr>
<td>Water Trough</td>
<td>1</td>
</tr>
<tr>
<td>Swage Block on stand</td>
<td>1 (optional)</td>
</tr>
<tr>
<td>Sledge Hammer - 7 lbs.</td>
<td>1</td>
</tr>
<tr>
<td>Backing Hammer - 3 lbs.</td>
<td>1</td>
</tr>
<tr>
<td>Ball Pein Hammer - 2 lbs.</td>
<td>1</td>
</tr>
<tr>
<td>Top and Bottom Fullers - 5"/6mm</td>
<td>1 pair (optional)</td>
</tr>
<tr>
<td>Top and Bottom Fullers - 3/8"/10mm</td>
<td>1 pair (optional)</td>
</tr>
<tr>
<td>Top and Bottom Fullers - 1/2"/13mm</td>
<td>1 pair (optional)</td>
</tr>
<tr>
<td>Top and Bottom Swage - 1/4"/5mm</td>
<td>1 pair (optional)</td>
</tr>
<tr>
<td>Top and Bottom Swage - 5/16"/6mm</td>
<td>1 pair (optional)</td>
</tr>
<tr>
<td>Top and Bottom Swage - 3/8"/10mm</td>
<td>1 pair (optional)</td>
</tr>
<tr>
<td>Top and Bottom Swage - 1/2"/13mm</td>
<td>1 pair (optional)</td>
</tr>
<tr>
<td>Hot Sett</td>
<td>1</td>
</tr>
<tr>
<td>Cold Sett</td>
<td>1</td>
</tr>
<tr>
<td>Rivet Set and Snap - 1/8"/3mm</td>
<td>2 pairs</td>
</tr>
<tr>
<td>Rivet Set and Snap - 3/16"/5mm</td>
<td>2 pairs</td>
</tr>
<tr>
<td>Universal Tongs</td>
<td>2 pairs</td>
</tr>
<tr>
<td>Hollow Bit, 5/16"/8mm Bit</td>
<td>2 (optional)</td>
</tr>
<tr>
<td>Hollow Bit, 3/8"/10mm</td>
<td>2 (optional)</td>
</tr>
<tr>
<td>Flat bit, 1/8"/3mm Bit</td>
<td>2 (optional)</td>
</tr>
<tr>
<td>Flat Bit, 1/4"/6mm Bit</td>
<td>2 (optional)</td>
</tr>
<tr>
<td>Rule, Stainless Steel 24"/600mm</td>
<td>2</td>
</tr>
<tr>
<td>Callipers, Outside 12"/300mm</td>
<td>1 (optional)</td>
</tr>
<tr>
<td>Callipers, Inside 12"/300mm</td>
<td>2 (optional)</td>
</tr>
<tr>
<td>Smith’s Square, 18"/450mm</td>
<td>1</td>
</tr>
</tbody>
</table>

Welding - Oxy-Acetylene (Complete)

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welders Goggles with lenses</td>
<td>6</td>
</tr>
<tr>
<td>Sparklighter with flint</td>
<td>2</td>
</tr>
<tr>
<td>Steel Brushes</td>
<td>4</td>
</tr>
<tr>
<td>Carver Clamps, assorted sizes</td>
<td>1</td>
</tr>
<tr>
<td>Acetylene Manifold</td>
<td>2</td>
</tr>
<tr>
<td>Oxygen manifold</td>
<td>1 (optional)</td>
</tr>
</tbody>
</table>

Electric Arc Welding

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.C./D.C. Electric arc welder with cables, round clamp</td>
<td>1</td>
</tr>
<tr>
<td>and electric holder 180-300 amps</td>
<td></td>
</tr>
<tr>
<td>Welding helmets with slide-in lens holder</td>
<td>3</td>
</tr>
<tr>
<td>Double station oxyacetylene work table, each working surface 3’ x 18", covered with</td>
<td>1 (optional)</td>
</tr>
<tr>
<td>Fire bricks</td>
<td></td>
</tr>
<tr>
<td>Metal table for arc welding with enclosure and canvas curtain</td>
<td>1</td>
</tr>
<tr>
<td>Chipping hammer</td>
<td>1</td>
</tr>
</tbody>
</table>
SUGGESTED READING LIST

The following is a list of books and other printed material which may be used for the CXC Mechanical Engineering Technology Unit. The list is not exhaustive or prescriptive, but indicates sources which may be appropriate for use by teachers and students.

Austin, Vincent

Bedford, John R.

Chapman, W.A.J.

Driscoll, T & Hibberson, E.

Feirer, John L.

Feirer, John L.

Gerrish, Howard H.

Kirkcaldy, C.

Ludwig, Oswald A.
Metalworking Technology and Practice, 1990. McKnight, New York

Petit, T.

Smith, Robert E.

Thomas, G. H.
CARIBBEAN EXAMINATIONS COUNCIL
MECHANICAL ENGINEERING TECHNOLOGY
SCHOOL-BASED ASSESSMENT CANDIDATES' RECORD SHEET

SCHOOL: ___ INSTRUCTOR: ______________________________
TERRITORY: _______________________________________ PROFICIENCY: TECHNICAL

This Record Sheet is to be returned to the Local Registrar
in time to be forwarded to CXC by April 30 in the year of the examination

<table>
<thead>
<tr>
<th>PROJECT TITLE</th>
<th>PICTORIAL SKETCH</th>
<th>ORTHOGRAPHIC DRAWING</th>
<th>PROCEDURES</th>
<th>LIST OF MATERIALS</th>
<th>LAYOUT AND CONSTRUCTION</th>
<th>JOINTS</th>
<th>ASSEMBLY</th>
<th>FINISH</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>04</td>
<td>06</td>
<td>04</td>
<td>06</td>
<td>15</td>
<td>20</td>
<td>15</td>
<td>20</td>
<td>90</td>
</tr>
</tbody>
</table>

Maximum Mark

<table>
<thead>
<tr>
<th>PROJECT TITLE/TOPIC</th>
<th>INTRODUCTION</th>
<th>CONTENT</th>
<th>ILLUSTRATION</th>
<th>SUMMARY</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>05</td>
<td>10</td>
<td>10</td>
<td>05</td>
<td>30</td>
</tr>
</tbody>
</table>

GRAND TOTAL

<table>
<thead>
<tr>
<th>MAXIMUM MARK</th>
<th>04 06 04 06 15 20 15 20 90 05 10 10 05 30 120</th>
</tr>
</thead>
</table>

CANDIDATE NAME/
REGISTRATION NUMBER

Head of Department: ___________________ Principal: ____________________ Date: ______________________

CXC /13/T/ SYLL 00
UNIT 3: BUILDING TECHNOLOGY – OPTION (I) WOODS

GENERAL OBJECTIVES

1. To help students acquire knowledge, skills and attitudes needed for employment at entry level and as prerequisites for further education and training in the woods and associated industries.

2. To help students acquire practical experiences that will enable them to develop skills in the use of tools, materials and processes associated with the woods industry.

3. To help students develop skills in planning and designing through appropriate problem-solving activities.

4. To develop an awareness among students of the career opportunities available in the woods and associated fields.

5. To help students adopt good, safety, health and environmental practices.

6. To provide students with the fundamentals of the computer and its application as it relates to the Industrial Technology programme.

MODULE C1: SAFETY, HEALTH AND WELFARE

MODULE C2: HAND TOOLS AND BENCH WORK

MODULE C3: MACHINE OPERATIONS

MODULE C4: UPHOLSTERY

MODULE C5: FINISHES

MODULE C6: FURNITURE CONSTRUCTION

MODULE C7: DRAWING AND DESIGN

MODULE C8: INTRODUCTION TO COMPUTER

MODULE C9: CAREER OPPORTUNITIES
MODULE C1: SAFETY, HEALTH AND WELFARE

C1.1 General Health and Safety Procedures
C1.2 Appropriate Health and Safety Equipment, Gear and Accessories
C1.3 First Aid
C1.4 Safe and Healthy Working Environment
C1.5 Accident Reports

MODULE C2: HAND TOOLS AND BENCH WORK

C2.1 Planning and Layout
C2.2 Cutting and Shaping with Hand Tools
C2.3 Joint Construction
C2.4 Fasteners and Fastening
C2.5 Maintenance of Common Hand Tools

MODULE C3: MACHINE OPERATIONS

C3.1 The Circular Saw
C3.2 Band Saw
C3.3 Jig/Scroll Saw
C3.4 Jointer
C3.5 Thickness Planer
C3.6 Mortiser
C3.7 Wood-Turning Lathe
C3.8 Drill Press
C3.9 Grinders
C3.10 Portable Electric Power Tools
C3.11 1) Router; 2) Electric Drill 3) Sander

MODULE C4: UPHOLSTERY

C4.1 Tools and Materials
C4.2 Frame and Construction
C4.3 Webbing
C4.4 Padding and Covering

MODULE C5: FINISHES

C5.1 Types of Finishes
C5.2 Preparation of Finishes
C5.3 Application of Finishes
C5.4 Laminated of Finishes

MODULE C6: FURNITURE CONSTRUCTION

C6.1 Materials
C6.2 Ironmongery
C6.3 Basic Cabinet Making
C6.4 Household Furniture
MODULE C7: DRAWING AND DESIGN

C7.1 Introduction to Drawing
C7.2 Introduction to Design

MODULE C8: INTRODUCTION TO COMPUTER

C8.1 Basic Computer Appreciation
C8.2 Operating the System
C8.3 Basic Programming Packages
C8.4 Computer Application

MODULE C9: CAREER OPPORTUNITIES

C9.1 Careers in Building Technology (Woods) and Other Related Fields
C9.2 Professional Ethics ad Business Norms

FORMAT OF EXAMINATIONS

Woods

The format of the examinations for the Building Technology Unit – Woods Option is:

Paper I
A 60-item multiple-choice paper testing the theoretical aspects of the Unit. Knowledge and Application will be tested in the ratio of 1:1. The paper will be worth 60 marks.

(1¼ hours)

Paper II
A free response paper in three sections. Each question will receive equal weighting for the profile dimensions, Knowledge and Application.

(2½ hours)

Section A
One compulsory question based on the work done on Module C7: Drawing and Design. The question will be worth 40 marks.

Section B
Five questions based on Modules C2, C3, C5, C6.1: Materials and C6.2: Ironmongery. Candidates must answer three questions. Each question will be worth 20 marks.

Section C
Three questions based on Modules C4: Upholstery, Modules C6.3: Basic Cabinet Making, and C6.4: Household Furniture. (One question on Upholstery and one question each on ‘Cabinet Making’ and ‘Household Furniture, respectively). Candidates must answer one question on either Module C4: Upholstery or Module C6.3: Cabinet Making or C6.4: Household Furniture.

Paper III
Candidates are required to complete two assignments during terms 4 and 5 (Terms one and two of the examination year). Each candidate is required to complete:

School-Based Assessment (SBA)
i) one practical project to be selected from a list of three published by CXC. This will be worth 90 marks for the profile dimension Practical Ability.

ii) a written assignment set by CXC based on the Common Module C9: Career Opportunities. This will be worth 30 marks for the profile dimension Practical Ability.

Details of the School-Based Assessment component are on pages 102-105.
Construction

The format of the examinations for the Building Technology Unit – Construction Option is:

Paper I (1¼ hours) A 60-item multiple choice paper testing the theoretical aspects of the Unit. Knowledge and Application will be tested in the ratio of 1:1. The paper will be worth 60 marks.

Paper II (2½ hours) A free response paper in three sections. Each question will receive equal weighting for the profile dimensions, Knowledge and Application.

Section A One compulsory design question based on Modules D5 to D9 of the syllabus. The question will be worth 40 marks.

Section B Five questions based on Modules D2 to D10 of the syllabus. Candidates must answer three questions. Each question will be worth 20 marks.

Section C Three questions based on Modules D11 to D13 of the syllabus. Candidates must answer one question. The question will be worth 20 marks.

Paper III School-Based Assessment (SBA) Candidates are required to complete two assignments during terms 4 and 5 (Terms one and two of the examination year). Each candidate is required to complete:

i) one practical project to be selected from a list of three published by CXC. This will be worth 90 marks for the profile dimension Practical Ability.

ii) a written assignment set by CXC based on Module D15: Career Opportunities. This will be worth 30 marks for the profile dimension Practical Ability.

Details of the School-Based Assessment component are on pages 102-105.

Suggested Timetable Allocation

It is recommended that a minimum of five hours per week should be time tabled for the Building Technology Unit (Woods/Construction). The teaching periods should ideally be divided as follows:

- Theory: 2 sessions per week (1 hour and one 2 hour)
- Practical (laboratory): 1 session of 2 hours duration per week

Based on a 35 weeks year the total allocation is 350 hours over the two-year period; 210 hours for theory and 140 hours for practical (laboratory) work.

Notes

An additional 10 minutes reading time will be allowed for Paper II. The total time for Paper II will therefore be 2 hours and 40 minutes. No writing must be done during the 10 minutes reading time.

The use of calculators will be permitted in the examination.

ALLIED SUBJECTS

Students should be encouraged to include the following subjects in their programme of study: English A, Mathematics, Technical Drawing (with Building Drawing Option), and Physics or an equivalent such as Building Science.
C1.1: General Health and Safety Requirements and Procedures

Specific Objectives

The students should be able to:

1. identify personal and general safety requirements governing workshops and worksites;
 - Requirements as prescribed through rules and regulations for the country.

2. follow safety procedures based on rules and regulations for workshop and worksite.

C1.2: Appropriate Health and Safety Materials, Tools, Equipment, Gear and Accessories

The student should be able to:

1. define safety materials, tools, equipment, gears, accessories;
 - Types of safety materials, tools, equipment, gear, accessories.

2. identify the common safety gears, tools, equipment, materials and accessories for safe use;
 - Clothing: foot, hand and head, others. Woodwork tools/ equipment, ladders, scaffolding, heavy items, flammable and other materials.

3. demonstrate the safe use of materials, tools, equipment and accessories;
 - Types, accessories, procedures, maintenance.

4. identify the different types of fires;

5. Operate a fire extinguisher.
 - Types of fires and fire extinguishers; Procedures to use fire extinguishers. Maintenance of fire extinguishers.

C1.3: First Aid

The student should be able to:

1. define accident, injury, emergency;
 - Types of accidents, injuries, emergencies.

2. describe how to get professional help when an accident occurs;
 - Requirements and procedures to be followed after an accident.

3. explain how to apply first aid on an injured person while waiting for professional help;
 - Contents of First Aid Kit.
C1.4: SAFE AND HEALTHY WORKING ENVIRONMENT

<table>
<thead>
<tr>
<th>SPECIFIC OBJECTIVES</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>The student should be able to:</td>
<td></td>
</tr>
<tr>
<td>1. identify hazards, safe workstations, waste disposal, and hygienic practices;</td>
<td>Types of work environment, hazardous situations, disposals. Hygienic practices and requirement</td>
</tr>
<tr>
<td>2. identify practices at the workstation/site with reference to the following:</td>
<td>Knowledge of the environment and hazards; safe storage of materials and supplies, maintenance of tools, equipment and machine.</td>
</tr>
<tr>
<td>a) familiarity with area(s);</td>
<td></td>
</tr>
<tr>
<td>b) knowledge of hazards;</td>
<td></td>
</tr>
<tr>
<td>c) maximization of resources;</td>
<td></td>
</tr>
<tr>
<td>d) proper cleaning and maintenance schedule;</td>
<td></td>
</tr>
<tr>
<td>e) suitable work and maintenance procedures/method;</td>
<td></td>
</tr>
<tr>
<td>f) storage and space utilization;</td>
<td></td>
</tr>
<tr>
<td>g) suitable behaviour patterns;</td>
<td></td>
</tr>
<tr>
<td>h) correct methods of waste disposal;</td>
<td></td>
</tr>
<tr>
<td>i) rules, regulations, specifications;</td>
<td>Rules, specifications and regulations for dealing with accidents.</td>
</tr>
<tr>
<td>j) assessment and record recycling;</td>
<td></td>
</tr>
<tr>
<td>3. perform mock drills for emergencies.</td>
<td>Fire, natural disaster, emergency procedures.</td>
</tr>
<tr>
<td>The student should be able to:</td>
<td></td>
</tr>
<tr>
<td>C1.5: ACCIDENT REPORTS</td>
<td></td>
</tr>
<tr>
<td>1. identify types of accidents, injuries and emergencies;</td>
<td>Differentiate accidents, injuries, and emergencies.</td>
</tr>
<tr>
<td>2. describe the procedures followed in dealing with an accident;</td>
<td>Schedules and procedures.</td>
</tr>
</tbody>
</table>
MODULE C2: HAND TOOLS AND LAYING OUT

C2.1: PLANNING AND LAYING OUT

<table>
<thead>
<tr>
<th>SPECIFIC OBJECTIVES</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>The student should be able to:</td>
<td></td>
</tr>
<tr>
<td>1. plan work procedures;</td>
<td>Safety precautions and rules associated with the use of hand tools.</td>
</tr>
<tr>
<td>2. measure and layout work;</td>
<td>Measuring and layout tools: rules, try squares, combination squares, gauges, marking knives, dividers, sliding bevel.</td>
</tr>
<tr>
<td>3. saw with and across the grain of wood with hand saws (rip and cross cut);</td>
<td>Saws: rip, cross cut, panel; principal parts, functions and care.</td>
</tr>
<tr>
<td>4. assemble and adjust plane;</td>
<td>Planes: trying, jack, jointer, bullnose, plough, router, smoothing, block, rebate and fillister – principal parts and functions.</td>
</tr>
<tr>
<td>5. square up stock.</td>
<td></td>
</tr>
</tbody>
</table>

C2.2: CUTTING AND SHAPING WITH HAND TOOLS

<table>
<thead>
<tr>
<th>SPECIFIC OBJECTIVES</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>The student should be able to:</td>
<td></td>
</tr>
<tr>
<td>1. lay out and cut or shape chamfer and bevel;</td>
<td>Saws: tenon, dovetail compass, bow or turning, pad, coping – their parts and functions.</td>
</tr>
<tr>
<td>2. lay out, cut and form irregular shapes;</td>
<td>Chisels: firmer, bevelled-edge, mortise – parts and uses.</td>
</tr>
<tr>
<td>3. assemble, adjust and shape with spoke-shaves;</td>
<td>Spokeshaves: round and flat faced. Principle of operation. Parts and uses.</td>
</tr>
<tr>
<td>4. cut and pare with a chisel;</td>
<td>Gouges: firmer and scribe – parts and uses.</td>
</tr>
<tr>
<td>5. cut grooves with a gouge;</td>
<td></td>
</tr>
<tr>
<td>6. bore and drill holes;</td>
<td>Boring and drilling tools: brace and bit, breast drill, hand drill. Types of bits: auger, centre, counter-sink, dowel expansion, forstner.</td>
</tr>
</tbody>
</table>
C2.3: JOINT CONSTRUCTION

SPECIFIC OBJECTIVES

The student should be able to:

1. lay out and construct a butt joint, housing or dado joint, cross-lap halving joint, mortise and tenon joint, mitre joint, dovetail joints, and bridle joint.

CONTENT

C2.4: FASTENERS AND FASTENING

The student should be able to:

1. countersink holes;

2. fasten boards with screws, glues, dowel, and corrugated fasteners;

3. hold pieces together with hand screws and clamps;

4. drive and pull brads and nails;

5. fit common hinges, simple cupboard locks, catches, pulls, stops and other hardware.

CONTENT

Common hardware used in wood working. Hinges: butt surfaces, chest and continuous. Cabinet locks, catches, knobs and handles.

Wood glue: animal, casein, contact, fish, resin and vegetable. Preparation and uses of glue.

Wood screws – shapes, properties, sizes and sale units.

Screw drivers – types and uses.

Nails – shape, properties, parts, sizes and sale unit. Hammers – types, parts and uses.
C2.5: MAINTENANCE OF COMMON HAND TOOLS

SPECIFIC OBJECTIVES

The student should be able to:

1. **grind and set the chisel and plane blades**;
 - Safety procedures in the grinding and setting of cutting blades.

2. **remove, sharpen and reassemble cutting iron of a plane**;
 - Hand plane parts care and use.

3. **retooth, side dress, sharpen and set a hand saw**;
 - Care and proper usage of the hand saw.

MODULE C.3: MACHINE OPERATIONS

C3.1: THE CIRCULAR SAW

The student should be able to:

1. **remove and mount circular saw blade**;
 - Safety procedures in the operation of the circular saw.

2. **rip and cross cut with circular saw**;
 - Circular saw - principal parts, common varieties, guards, blades and adjustments. Care and uses. Operational procedures, standard, maintenance, service.

3. **cut mitre, rebate, bevels, chamfers and groves on the circular saw**.

C3.2: BAND SAW

The student should be able to:

1. **adjust and operate band saw**;
 - Safety procedures in the operation of the band saw.

2. **change band saw blades**;
 - Band saw- parts care and uses.

3. **cut a mitre, tenons, curves, circles and irregular patterns on the band saw**.
 - Various operations on the band saw. Folding the band saw blade.
C3.3: JIG / SCROLL SAW

SPECIFIC OBJECTIVES

The student should be able to:

1. adjust and operate jig or scroll saw;
2. make internal cuts on jig or scroll saw;
3. make external cuts on the jig or scroll saw;
4. cut multiple patterns on the jig or scroll saw.

CONTENT

Safety procedures in the operation of jig or scroll saw.

Jig or scroll saw - parts, uses and capacity. Steps in performing the various operations on the jig or scroll saw. Layout and transfer patterns.

C3.4: JOINTER

The student should be able to:

1. make adjustments to in-feed and out-feed tables;
2. surface or face on the jointer;
3. edge plane on the jointer;
4. square stock to given dimension on the jointer.

CONTENT

Safety procedures in the operation of the jointer.

The jointer and the jointer operation - parts, speed and care.

Common operations: surfacing, edging, chamfering, bevelling and tapering.

C3.5: THICKNESS PLANER

The student should be able to:

1. set and operate thickness planer;
2. plane stock to thickness;
3. plane thin stock;
4. plane multiple short stock.

CONTENT

Safety procedures in the operation of the thickness planer.

The thickness planer - types and sizes of planers.

Types of cutter heads. Adjustment to thickness planer. Feed rolls and control. Functions of adjustable chipbreaker and pressure bar. Steps of procedure in the performance of operations on thickness planer.
C3.6: MORTISER

SPECIFIC OBJECTIVES

The student should be able to:

1. set and operate the mortiser;
2. clamp stock in position;
3. set chisel for depth of cut;
4. cut mortise.

CONTENT

Safety procedures in the operation of the mortiser.

Hollow chisel mortiser – principal features, parts and uses. Mortising attachments.

C3.7: WOOD-TURNING LATHE

The student should be able to:

1. centre and mount stock in lathe;
2. turn between centres;
3. set and use callipers;
4. turn cylinders;
5. part or cut off stock;
6. make concave or convex cuts;
7. cut tapers in lathe;
8. turn legs and cylinders with square parts;
9. cut shoulders;
10. turn duplicate parts or pieces;
11. fasten work to face plate;
12. turn stock on face plate;
13. turn stock in chuck;
14. sand and finish in lathe;
15. sharpen turning chisels and gouges.

CONTENT

Safety procedures in the operation of the wood-turning lathe.

The lathe-types, parts, and uses.

Turning tools: chisels, gouges, callipers, parting tools.

Procedures for centering stock and rough turning.
C3.8: DRILL PRESS

SPECIFIC OBJECTIVES

The student should be able to:

1. insert drills and adjust table;
2. secure stock to table;
3. drill holes;
4. adjust spindle gravel depth gauge;
5. attach mortising attachment to drill press;
6. cut mortise on drill press.

CONTENT

- Safety procedures in the operation of the drill press.

C3.9: GRINDERS

SPECIFIC OBJECTIVES

The student should be able to:

1. grind plane iron, chisel and gouges with a power grinder;
2. grind turning tools;
3. grind drill bits;
4. dress grinding wheels.

CONTENT

- Safety procedures in using grinders.
- Grinders - bench and floor models; principal parts and functions.
- Procedures in grinding edge tools.
- Sizes and kinds of wheels. Abrasives - types.

C3.10: PORTABLE ELECTRIC POWER TOOLS

SPECIFIC OBJECTIVES

The student should be able to:

Router

1. shape an edge;
2. cut grooves, recesses, rebates and dovetails;

Electric Drill

3. operate portable electric drill;

CONTENT

- Safety procedures in the operation of portable electric tools.
- Routers – parts and functions of each part. Special router cuts.
- Portable electric drill – parts and functions of each part.
C3.10: PORTABLE ELECTRIC POWER TOOLS CONT'D

SPECIFIC OBJECTIVES

The student should be able to:

<table>
<thead>
<tr>
<th>Sanders</th>
<th>Jig Saw</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. sand with belt sander;</td>
<td>6. operate portable electric jig saw.</td>
</tr>
<tr>
<td>5. sand with orbital sander;</td>
<td></td>
</tr>
</tbody>
</table>

CONTENT

<table>
<thead>
<tr>
<th>Sanders</th>
<th>Jig Saw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanders. Grades of belts, discs and sheets.</td>
<td>Care of sanders</td>
</tr>
<tr>
<td>Parts and function of each part.</td>
<td></td>
</tr>
</tbody>
</table>

MODULE C4: UPHOLSTERY

C4.1: TOOLS AND MATERIALS

The student should be able to:

1. list basic hand tools;	Classification of tools.
2. care and use tools appropriately	Kinds of timber suitable for joinery construction. Understand and identify materials.
3. identify suitable materials for a specific job.	

C4.2: FRAME AND CONSTRUCTION

The student should be able to:

1. select suitable lumber;	Kinds of lumber suitable for frame construction.
2. lay out frames;	Calculation of correct sizes of frames, methods of assembling frames. Screws, dowel and glue.
3. assemble frames.	

C4.3: WEBBING

The student should be able to:

1. locate position of webbing;	Upholstery tools and equipment benches, or trestles, upholsterer's hammer, webbing skewer, ripping tool, upholsterer's pin or regulator stapling gun.
2. determine amount of webbing to be used;	Materials: webbing, burlap - their sources and manufacture.
3. tack and stretch webbing;	
4. attach burlap;	
5. roll edges on wood.	
C4.4: Padding and Covering

SPECIFIC OBJECTIVES

The student should be able to:

1. plan and cut coverings;
2. apply stuffing or padding to surfaces;
3. put on covers;
4. cut covers to fit corners;
5. make pleats.

CONTENT

- Procedures in determining sizes of covers. Types, grades of covers.
- Procedures in applying stuffing to area to be upholstered.

Module C5: Finishing

C5.1: Types of Finishes

The student should be able to:

1. list and describe the various types of finishes;
2. compare various types of finishes;
3. determine the advantages and disadvantages of various finishes.

CONTENT

- Safety techniques to be used in the application of various type of finishes.

C5.2: Preparation of Finishes

The student should be able to:

1. select correct grade of abrasive;
2. scrape surface with scraper;
3. sand surface;
4. apply filler;
5. rub down filler;
6. seal surface with sealer.

CONTENT

- Wood filler and sealer - kinds and uses.
C5.3: APPLICATION OF FINISHES

SPECIFIC OBJECTIVES

The student should be able to:

1. apply varnish to surface with brush or spray gun;
2. stain surface using a brush;
3. apply paint and enamel to surface using brush or roller;
4. apply shellac or lacquer with brush or spray gun;
5. apply french polish;
6. apply oils.

CONTENT

- Appropriate finishes.
- Common finishes: stain, varnish or french polish, lacquer, paint and enamel.
- Tung, linseed, teak.

C5.4: LAMINATED FINISHES

The student should be able to:

1. select suitable colours to blend with surroundings;
2. describe the long term advantage of using laminated finishes over wooden finish.

CONTENT

- Safety in handling and usage of laminated plastic.
- Cutting and application of laminated plastic.
- Types of adhesives that are appropriate in the application of laminated finishes.
MODULE C6: FURNITURE CONSTRUCTION

C6.1: MATERIALS

SPECIFIC OBJECTIVES
The student should be able to:

1. identify the parts of a tree;
2. distinguish between hard-woods and softwoods;
3. explain methods of conversion of lumber in relation to specific uses;
4. describe methods of seasoning lumber;
5. perform experiments to determine moisture content in lumber;
6. identify defects in wood;
7. describe the methods of wood preservation;
8. describe the methods of production of manufactured boards;
9. list the properties of manufactured boards;
10. select and purchase various kinds of boards;
11. calculate board measure

CONTENT
The growth and structure of common woods.

Characteristics of hardwoods and softwoods.

Conversion of lumber.

Seasoning of lumber – types, processes and effects.

Moisture content and movement in lumber.

Common wood defects.

Preservation of woods.

Manufactured boards: plywood, laminated boards, hardboards, bagasse board, MDF (medium density fibreboard) – production, properties and uses.

Classification, commercial forms and supply of lumber.

C6.2: IRONMONGERY

The student should be able to:

1. list and sketch free hand the various type of ironmongery;
2. make a sound selection of suitable and appropriate ironmongery;

Safety in the installation of ironmongery.

Types of materials used in the production of ironmongery.
C6.2: IRONMONGERY CONT'D

SPECIFIC OBJECTIVES

The student should be able to:

3. describe with sketches appropriate fasteners to be used when applying different ironmongery.

4. determine size and shape

CONTENT

- Installation and care of ironmongery.

C6.3: BASIC CABINET MAKING

SPECIFIC OBJECTIVES

The student should be able to:

1. list the various types of cabinet;

2. select suitable material and fittings for cabinet making;

3. describe steps required for the installation and removal of various ironmongery;

4. construct various types of cabinets.

CONTENT

- Carcase construction: framed, framed and panelled, solid end, solid.
- Safety in the installation of appropriate fittings for cabinet.
- Care and maintenance of cabinet fittings.
- Safety in the construction of cabinets.

C6.4: HOUSEHOLD FURNITURE

SPECIFIC OBJECTIVES

The student should be able to:

1. list and make neat free hand sketches of furniture for household use;

2. list materials that are appropriate for the construction of household fixtures;

3. explain in a logical sequence the advantages and disadvantages of wood, metal and plastic furniture for home use;

4. construct household furniture;

CONTENT

- Household construction:
 a) flat framed – windows and doors;
 b) framed – stool and tables;
 c) box construction – drawer, boxes;
 d) bent and moulded shapes – rails, arms, seats.
- Safety in the construction of household furniture.
C6.4: HOUSEHOLD FURNITURE CONT’D

SPECIFIC OBJECTIVES

The student should be able to:

5. Sketch free hand various joints suitable in the production of furniture for household use;

6. List and describe the procedure for installing built-in furniture in wood, concrete structure.

CONTENT

Appropriate and suitable technique for installing hinges, bolts and locking devices.

MODULE C7: DRAWING AND DESIGN

C7.1: INTRODUCTION TO DRAWING

The student should be able to:

1. read and interpret blue-prints of projects;

2. plan layout of projects;

3. use and care common drawing instruments;

4. draw and identify various lines used in drawing;

5. letter and dimension drawings;

6. make simple free-hand sketches of working drawings;

7. prepare two and three view working drawings;

8. use geometrical constructions in the drafting of projects;

9. prepare a bill of materials required for the construction of a project;

10. prepare detailed drawings of doors and window frames, cupboards and fixtures.

Drawing instruments: pencils, T-squares, scales, compasses, protractor, set square.

Alphabet of lines: object line, hidden line, centre line, construction line, extension line, dimension line and arrow head.

Projections in drawings; orthographic, oblique, isometric. Perspective.
C7.2: INTRODUCTION TO DESIGN

SPECIFIC OBJECTIVES

The student should be able to:

1. design projects to be constructed in workshop;
2. complete design with fitted parts;
3. design furniture or projects to be used in school or home;
4. identify special features and mechanism of hand tools and machines used in wood-working;
5. identify basic constructional features employed in workshop projects.

CONTENT

- Techniques of design; materials and construction; elements of good design; principle of arrangement.
- Design in industry. Production methods and their influence on design. Consumer knowledge and acceptance. Evaluation of design: function, durability, economy,
- Material, construction and beauty.

MODULE C8: INTRODUCTION TO COMPUTER

C8.1: BASIC COMPUTER APPRECIATION

The student should be able to:

1. list the various parts that make up a computer system.

CONTENT

- Input and output devices, storage devices, control processing unit, system software, application software, computer networks, protective devices: voltage regulator, surge protector, UPS.

C8.2: OPERATING THE SYSTEM

The student should be able to:

1. identify the steps involved in operating the computer system.

CONTENT

- Boot up the system; format a blank disk; back up data; software application; copy files; file management; DOS Windows, Mac OS.
C8.3: BASIC SOFTWARE PACKAGES

SPECIFIC OBJECTIVES

The student should be able to:

1. perform simple tasks using commonly available applications.

CONTENT

- Windows; productivity tools: Wordprocessing, Spreadsheet, Data Base Management; AutoCad, Graphic Packages.

C8.4: COMPUTER APPLICATIONS

SPECIFIC OBJECTIVES

The student should be able to:

1. list the many uses of the computer in Industry.

CONTENT

- Accounting/financial applications; human resource applications; material/inventory management; process control; robotics; decision support system; research and development, CAD/CAM, CNC.

MODULE C9: CAREER OPPORTUNITIES

C9.1: CAREERS IN BUILDING AND OTHER RELATED FIELDS

The student should be able to:

1. list career opportunities in Building Technology (Woods) and related fields locally and regionally;

2. compare occupational profiles and descriptions of two occupations in the field of engineering;

3. identify opportunities/situations in your community/territory that may lead to employment or self employment in Building Technology (Woods) or related fields;

4. source information on career opportunities in Building Technology (Woods);

CONTENT

- Fields: Civil/Construction Engineering; Electrical/Electronic Engineering; Mechanical/Production Engineering; Industrial Engineering.
- Industrial or maintenance plants jobs.
- Professional journals/organisations, internet, newspapers.
C9.1: CAREERS IN BUILDING AND OTHER RELATED FIELDS

SPECIFIC OBJECTIVES

The student should be able to:

5. Prepare and write report/short paper on:

 d) industrial tours made;

 e) current innovations in the field of engineering;

 f) engineers, inventors or educators who have made significant contributions to the field of engineering.

CONTENT

Visits to multinational, regional, national engineering and service companies.

Use of the computer in engineering.

Great inventors and engineers.

C9.2: PROFESSIONAL ETHICS AND BUSINESS NORMS

The student should be able to:

1. list work habits necessary for the development of good work attitudes;

2. identify education/training/qualification requirement for selected occupations in the field of Building Technology (Woods);

3. specify duties and responsibilities for occupations related to Building Technology (Woods);

4. demonstrate knowledge of business norms, regulations and codes.

- Code of ethics, punctuality, regularity, neatness, following instructions, safety, attitudes, tolerance, courtesy, human relations.

- Secondary education, practical experience and training certificate, Diploma, Associate Degree, Bachelor Degree.

- Duties and responsibilities of semi-skilled, skilled, supervisor, manager.

THE SCHOOL-BASED ASSESSMENT COMPONENT

RATIONALE

The School-Based Assessment component of the Building Technology - Woods option will measure the practical skills not tested on the multiple choice and free response papers (Papers 1 and 2).

The assignments set for SBA are intended to deepen the students’ knowledge and help them achieve competency in skills required in the Building/Woodwork industry and which are within the competence of secondary school candidates.

By focusing on processes as well as product, the SBA component will allow students to demonstrate improvement in skills over a period of time and for their teachers’ involvement in the assessment process.

REQUIREMENTS

Each candidate is required to complete a practical and a written assignment, during terms 4 and 5 of the two years’ course (Terms one and two of the examination year). The practical assignment is worth 90 marks and the written assignment is worth 30 marks.

Practical Assignment

For the practical assignment, candidates will be required to construct a project designed to utilise the skills and knowledge covered in the syllabus. Candidates should choose one project from a list of three provided by CXC and fulfil the requirements stated for the project. The project must NOT exceed the dimensions of 700 mm long x 400 mm wide x 400 mm deep. All dimensions for the project are in millimetres (mm) unless otherwise stated. Dimensions omitted are left to candidates’ discretion.

Each candidate is expected
i) to provide a plan sheet for the project which MUST include the following:
 a) drawings and/or sketches;
 b) steps of procedure;
 c) a bill of materials;
 d) a list of tools and equipment to be used.
ii) to construct a project

The particulars for the project must be approved by the teacher before any work is started on the project.
Written Assignment

The written assignment will take the form of a report of about 1000-1200 words based on the Common Module: Career Opportunities. Candidates must write on the topic set by CXC for each examination. The topic will be based on the themes in Module, i.e.

i) Job Search

a) Jobs in the Building/Woodwork industry (types, wages, other remuneration).

b) Qualifications for the job (A class/B class/C class workers) or for apprentices and/or trainees.

c) Type, availability and cost of training required: trade school, vocational/technical school, college or university.

d) Desirable work habits and attitudes.

e) Writing letters of application for various types of jobs (how to set out a CV).

f) Interviewing skills.

ii) Career Choice

a) Gathering information on careers (from libraries, labour offices and internet).

b) Writing profiles on different careers.

c) Planning debates and lectures on different careers under the guidance of the teacher.

d) Making and justifying a career choice.

iii) Industrial Visits

a) Planned visits to industries, industrial sites. (These should include small, medium and large businesses). A good example is a small furniture factory.

b) Preparation of report on the visit: the report should include, where possible, sketches, drawings and photographs in addition to the written material.

iv) Profile of Engineer or Inventor

a) Summary of biographical data;

b) Major works/experiments/inventions and how these were validated;

c) Evaluation/impact of individual’s contribution to the industry.

Candidates will be assessed on accuracy of information, clarity of presentation, the use of technical language and knowledge of career opportunities in the Building Technology industry as outlined in Common Module of the Unit.
ASSESSMENT OF ASSIGNMENTS

Teacher Assessment

The teacher will mark the assignments and submit the marks on the specified Assessment Sheet to the Local Registrar to reach the CXC Headquarters Office by April 30 in the year of the examination. Local Registrars will therefore set their own deadline date to fall prior to April 30. The assignments must be marked based on the mark allocation given in the Specimen SBA Candidates’ Assessment Sheet on page 106.

External Assessment

An external Assessor will visit each school twice during the final year. On the first visit he/she will assess the process of constructing the practical project and on the final visit he/she will reassess the completed project work already marked by the teacher. The visiting schedule will be agreed on by the Local Registrar, Principal and the Assessor.

Retention of Work

All projects are a part of the examination work and therefore will be considered the property of CXC. CXC will request from schools written projects identified by CXC. The specified projects must be sent to reach the CXC Office indicated with the request by June 30 in the year of the examination. Projects remaining at the schools MUST be securely retained by the school administration on behalf of CXC until three months after the publication of examination results.

SBA materials

Be September 1 of each year, schools should receive from Local Registrars information on the SBA requirements for that academic year. This should include:

i) the practical projects set for that year with their assessment criteria and mark scheme and accompanying guidelines for their construction (one booklet per candidate);

ii) Project Plan Sheets (one per candidate);

iii) the list of topics for the written assignment;

iv) Record Sheets with mark allocation (one for 10 candidates);

v) a copy of the Moderator’s Rating Sheet (only for schools presenting candidates for the first time).

Materials for Projects

The materials specified by CXC in the SBA booklet should be used for the construction of projects wherever possible.

In cases where the materials specified for the construction of projects are scarce or expensive, suitable alternatives may be used. An explanatory report must be submitted by the teacher together with the Assessment Sheet to reach CXC Headquarters, Barbados by April 30 in the year of the examination.
GUIDELINES FOR RESIT CANDIDATES

Candidates who have obtained at least 50 per cent of the total SBA marks in their initial attempt will not be required to repeat this component of the examination provided that they rewrite the examination in the year immediately following the first sitting.

Such candidates should, on registration, indicate that they are resit candidates and give their registration number from the previous year.

Candidates who have obtained less than 50 per cent of the total SBA marks must repeat the SBA requirements set for Terms 4 and 5. Repeat candidates must be entered for the examination through an educational institution.
CARIBBEAN EXAMINATIONS COUNCIL

BUILDING TECHNOLOGY - OPTION WOODS

SCHOOL-BASED ASSESSMENT CANDIDATES’ RECORD SHEET

SCHOOL: ____________________________________ INSTRUCTOR: _______________________________
TERRITORY: ________________________________ PROFICIENCY: TECHNICAL

This Record Sheet is to be returned to the Local Registrar
in time to be forwarded to CXC by April 30 in the year of the examination

<table>
<thead>
<tr>
<th>PROJECT TITLE</th>
<th>PICTORIAL SKETCH</th>
<th>ORTHOGRAPHIC DRAWING</th>
<th>PROCEDURES</th>
<th>LIST OF MATERIALS</th>
<th>LAYOUT AND CONSTRUCTION</th>
<th>JOINTS</th>
<th>ASSEMBLY</th>
<th>FINISH</th>
<th>TOTAL</th>
<th>PROJECT TITLE/TOPIC</th>
<th>INTRODUCTION</th>
<th>CONTENT</th>
<th>ILLUSTRATION</th>
<th>SUMMARY</th>
<th>TOTAL</th>
<th>GRAND TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>04</td>
<td>06</td>
<td>04</td>
<td>06</td>
<td>15</td>
<td>20</td>
<td>15</td>
<td>20</td>
<td>90</td>
<td></td>
<td>05</td>
<td>10</td>
<td>10</td>
<td>05</td>
<td>30</td>
<td>120</td>
</tr>
</tbody>
</table>

CANDIDATE NAME/REGISTRATION NUMBER

Head of Department: ____________________ Principal: _____________________ Date: ____________________
UNIT 3: BUILDING TECHNOLOGY – OPTION (II) CONSTRUCTION

GENERAL OBJECTIVES

1. To provide students with the necessary competence (knowledge, skills and attitudes) as prerequisites for further education and training in the Building and associated industries.

2. To help students acquire practical experiences in problem solving at school, at home and in the community, using tools, materials, procedures and processes associated with the building industry.

3. To help students adopt good safety, health and environmental practices.

4. To help students appreciate the building codes and specifications.

5. To help students understand the role of the building industry in the socio-economic development of their country and elsewhere.

6. To develop an awareness among students of the career opportunities available in the building industry and associated fields.

7. To provide students with the fundamentals of the computer and its application as it relates to the Industrial Technology Programme.

8. To help students develop an appreciation for curvature over doors and window openings.

MODULE D1: SAFETY, HEALTH AND WELFARE

MODULE D2: PRELIMINARY SITE WORK

MODULE D3: BUILDING MATERIALS

MODULE D4: FOUNDATIONS

MODULE D5: WALLS

MODULE D6: FLOORS

MODULE D7: ROOFS

MODULE D8: DOORS/WINDOWS

MODULE D9: STAIRS

MODULE D10: FINISHES

MODULE D11: RELATED SERVICES

MODULE D12: BUILDING TEAMS AND BUILDING TRADES

MODULE D13: HISTORY OF BUILDING
MODULE D1: SAFETY, HEALTH AND WELFARE

D1.1 General Health and Safety Procedures
D1.2 Appropriate Health and Safety Equipment, Gear and Accessories
D1.3 First Aid
D1.4 Safe and Healthy Working Environment
D1.5 Accident Reports
D1.6 Maintenance of Common Hand Tools

MODULE D2: PRELIMINARY SITE WORK

D2.1 Selection and Preparation of Site

MODULE D3: BUILDING MATERIALS

D3.1 Concrete
D3.2 Plastics and Water-Proofing Materials
D3.3 Timber and Timber Products
D3.4 Ironmongery

MODULE D4: FOUNDATIONS

D4.1 Types, Function and Laying of Foundations

MODULE D5: WALLS

D5.1 Types, Function and Construction of Walls

MODULE D6: FLOORS

D6.1 Types, Function and Construction of Floors

MODULE D7: ROOFS

D7.1 Types, Function and Construction of Roofs

MODULE D8: DOORS/WINDOWS

D8.1 Types, Function and Construction of Doors
D8.2 Types, Function and Construction of Windows
MODULE D9: STAIRS
D9.1 Types, Function and Construction of Stairs

MODULE D10: FINISHES
D10.1 Function, Types and Application of Finishes

MODULE D11: RELATED SERVICES
D11.1 Related Services (Plumbing, Drainage, Sewerage, Electrics, Telephone)

MODULE D12: BUILDING TEAMS AND BUILDING TRADES
D12.1 Members of the Building Team and Building Trade

MODULE D13: HISTORY OF BUILDING
D13.1 Factors Influencing Designs

MODULE D14: INTRODUCTION TO COMPUTER
D14.1 Basic Computer Appreciation
D14.2 Operating the System
D14.3 Basic Programming Packages
D14.4 Computer Application

MODULE D15: CAREER OPPORTUNITIES
D15.1 Careers in Building and Engineering and Other Related Fields
D15.2 Professional Ethics and Business Norms

MODULE D1: SAFETY, HEALTH AND WELFARE

D1.1: GENERAL HEALTH AND SAFETY REQUIREMENTS AND PROCEDURES

SPECIFIC OBJECTIVES

The students should be able to:

1. identify personal and general safety requirements governing workshops and worksites;

2. follow safety procedures based on rules and regulations for workshop and worksite.

CONTENT

Requirements as prescribed through rules and regulations for the country.

List of rules/regulations. Procedures for specific rules and regulations in booklets, charts diagrams, video tapes.
D1.2: APPROPRIATE HEALTH AND SAFETY MATERIALS, TOOLS, EQUIPMENT, GEAR AND ACCESSORIES

SPECIFIC OBJECTIVES

The student should be able to:

3. define safety materials, tools, equipment, gears, accessories;

4. identify the common safety gears, tools, equipment, materials and accessories for safe use;

5. demonstrate the safe use of materials, tools, equipment and accessories;

6. identify the different types of fires;

7. Operate a fire extinguisher.

CONTENT

| Types of safety materials, tools, equipment, gear, accessories. |
| Clothing; foot, hand and head, others. Building tools/equipment, ladders, scaffolding, heavy items, flammable and other materials. |
| Types, accessories, procedures, maintenance. |
| Types of fires and fire extinguishers; Procedures to use fire extinguishers. Maintenance of fire extinguishers. |

D1.3: FIRST AID

The student should be able to:

1. define accident, injury, emergency;

2. describe how to get professional help when an accident occurs;

3. explain how to apply first aid on an injured person while waiting for professional help;

4. identify hazards, safe work-stations, waste disposal, and hygienic practices

CONTENT

| Types of accidents, injuries, emergencies. |
| Requirements and procedures to be followed after an accident. Contents of First Aid Kit. |
| Types of work environment, hazardous situations, disposals. Hygienic practices and requirement |
D1.4: SAFE AND HEALTHY WORKING ENVIRONMENT

SPECIFIC OBJECTIVES

The student should be able to:

28. identify practices at the workstation/site with reference to the following:

 a) familiarity with area(s);
 b) knowledge of hazards;
 c) maximization of resources;
 d) proper cleaning and maintenance schedule;
 e) suitable work and maintenance procedures/method;
 f) storage and space utilization;
 g) suitable behaviour patterns;
 h) correct methods of waste disposal;
 i) rules, regulations, specifications;
 j) assessment and record recycling;

29. perform mock drills for emergencies.

CONTENT

- Knowledge of the environment and hazards; safe storage of materials and supplies, maintenance of tools, equipment and machine.
- Rules, specifications and regulations for dealing with accidents.
- Fire, natural disaster, emergency procedures.

--

D1.5: ACCIDENT REPORTS

SPECIFIC OBJECTIVES

The student should be able to:

1. identify types of accidents, injuries and emergencies;

2. describe the procedures followed in dealing with an accident;

3. prepare an accident report which identifies the cause of the accident,

CONTENT

- Differentiate accidents, injuries, and emergencies.
- Schedules and procedures.
D1.6: MAINTENANCE OF COMMON HAND TOOLS

SPECIFIC OBJECTIVES

The students should be able to:

1. set, maintain, clean and inspect common hand tools;

2. describe the correct operational uses for such tools.

CONTENT

Planes, chisels, saws, hammers, mallets, marking knife, marking gauge, dividers, callipers, spoke shave, nail punch, hand drill, drill bits, squares, clamps, screw drivers.

Oil stones, oil cans, oils.

MODULE D2: PRELIMINARY SITE WORK

D2.1: SELECTION AND PREPARATION OF SITE

SPECIFIC OBJECTIVES

The student should be able to:

1. list the factors affecting choice of site;

2. state reasons for stripping the site;

3. explain the purposes of hoarding;

4. lay out simple buildings/structures;

5. state reasons for temporary shelter;

6. explain the purposes of temporary services.

CONTENT

Accessibility; cost; topography.

Removing top soil; preventing growth of vegetation; reducing instability of top soil.

Public protection; material protection, security; reducing interference and interruptions.

Squares and corners. Establishing levels; spirit levels, aqua level, datum pegs, builder’s square.

Installing batter boards and profile boards; measuring tapes, use of diagonals, mention of laser level. Check squareness by using the 3:4:5 method (Pythagoras theorem).

Site offices; sanitary facilities; equipment and material storage.

Water, electricity, gas, telephone.
MODULE D3: BUILDING MATERIALS

D3.1: CONCRETE

SPECIFIC OBJECTIVES

The student should be able to:

1. describe the process of manufacturing ordinary Portland cement;
 - Raw materials; proportioning methods; processes.
2. describe the characteristics of aggregates;
 - Characteristics (clean; sound; well-graded; strong). Types (sand; river stones; crushed gravel; limestone/marl).
3. state the importance of proportioning or batching concrete;
4. define 'concrete';
 - Mixture of cement, sand, gravel and water in definite proportions.
5. define 'mortar';
 - Mixture of cement, sand and water in specific proportions.
6. state the characteristics of various types of cement;
 - Type 1 Normal; Type 2 Sulphate Resistant; Type 3 Low Heat; Type 4 High Early; Type 5 Alumina.
7. identify situations requiring specific types of cement.
 - General; chemical deposit in soils; moisture levels; early development of strength; mass work.

D3.2: PLASTICS AND WATER-PROOFING MATERIALS

The student should be able to:

1. list the properties of plastics;
 - Lightweight; strong; soft; pliable; water proof; rust proof.
2. state the uses of plastics;
 - Conduits; seals, tiles, skirting, other components.
3. state situations requiring waterproofing.
 - Basements; waterlogged soils (water penetration); d.p. course; d.p. membrane tanking.
D3.3: TIMBER AND TIMBER PRODUCTS

SPECIFIC OBJECTIVES

The student should be able to:

1. identify the cross-section of a tree;
2. distinguish between hardwoods and softwoods;
3. explain methods of conversion of lumber in relation to specific uses;
4. describe methods of seasoning lumber;
5. perform experiments to determine moisture content in lumber;
6. identify defects in wood;
7. describe common methods of wood preservation;
8. describe the methods of production of manufactured boards;
9. list the properties of manufactured boards;
10. identify various pieces of timber;
11. calculate board measure;
12. explain the importance of insulation.

CONTENT

Parts of tree barks, annular rings, pith, cambium layers, medullary rays.

Hardwoods and softwoods.

Conversion of lumber; plain (flat) sawn; quarter sawn; tangential sawn.

Seasoning of lumber - types, processes and effect; natural and artificial.

Moisture content and movement in lumber; calculation of moisture content.

Common wood defects and diseases; bowing knots; dry rot; checks, warps.

Preservation of woods; spraying and brushing with wood preservative; pressure treatments; dipping.

Manufactured boards; plywood, laminated boards, hardboards, bagasse board production, properties and uses. Manufacturing methods. MDF boards.

Larger sizes, uniform texture, smooth surfaces, standard dimensions, predictable quality, less warp.

Classification, commercial forms and supply of lumber. Board, planks, laths, etc.

Cubic metres, L x W x T.

Thermal insulation, sound transmission; condensation; fire retardants (gypsum, fibre wall boards, CO₂ paints).
D3.4: IRONMONGERY

SPECIFIC OBJECTIVES

The student should be able to:

1. state the broad names of the various groups of ironmongery;
2. name the types of ironmongery in each group;
3. explain the purpose of each type of ironmongery;
4. use line diagram and or free-hand pictorial sketches to describe the various types of ironmongery;
5. explain in a logical and sequential order the technique to be used when installing a specific type of ironmongery;
6. select the appropriate ironmongery for a specific job;
7. list suitable materials for the construction and production of various ironmongery.

CONTENT

Safety in the installation of the various ironmongery.
Care and maintenance.
Safety and correct usage of appropriate tools for installation of ironmongery.
Types of appropriate surface coating to be used to protect the surface of ironmongery from the elements of the weather.

MODULE D4: FOUNDATIONS

D4.1: TYPES, FUNCTION AND CONSTRUCTION OF FOUNDATIONS

The student should be able to:

1. state the purposes of foundations;
2. prepare working drawings of strip foundations;
3. describe types of foundations;
4. explain methods of excavation (up to 1.2m below ground);
5. base for building; distribution of leads; stability; anchorage.
6. details; width, sectional details.
7. strip; simple pad; raft; stepped; short bored piles.
D4.1: TYPES, FUNCTION AND CONSTRUCTION OF FOUNDATIONS CONT’D

SPECIFIC OBJECTIVES

The student should be able to:

5. explain methods of timbering (up to 1.2m below ground);

6. demonstrate methods of batching concrete;

7. prepare concrete mixes;

8. perform simple tests on wet concrete;

9. list precautions to be taken when placing concrete;

10. explain the purposes of curing;

CONTENT

Polling boards; waling; plinth block; ties.

Weight; volume

Volume; weight; mixing manually mechanically.

Slump test; cube test.

Time between mixing and placing; transporting (avoid segregation); height of pour.

Retaining moisture so chemical action continues; developing strength; methods (spray, sandbags, ponding).

MODULE D5: WALLS

D5.1: TYPES, FUNCTION AND CONSTRUCTION OF WALLS

The student should be able to:

1. discuss the functions of walls;

2. distinguish between types of walls;

3. differentiate between types of bond;

4. draw plan and section of block wall;

5. sketch details of treatments to openings in walls;

Enclosing; protection from elements; support for roofs and upper floors; dividing space.

Loadbearing; non-load bearing. Exterior; partition. Blocks (standard sizes); bricks (standard sizes); stone; timber; parapet.

Stretcher; header; Flemish; English.

Bonds; finish; details.

Lintels; arches; door openings; window openings; frames.
D5.1: TYPES, FUNCTION AND CONSTRUCTION OF WALLS CONT’D

SPECIFIC OBJECTIVES

The student should be able to:

6. illustrate the use of simple scaffold/ladders;

7. list steps in laying block walls and brick walls;

8. lay courses of bricks and blocks;

9. construct stud partition wall;

10. discuss the need for shoring;

11. illustrate the methods of shoring.

CONTENT

Ladders (extensions); safety requirements; timber; independent.

Lining out, preparing mortar, base course, tools.

Stretcher; English, Running (bonds).

Head; sill, studs; sheathing; skirting; nogging pieces; platform method.

Temporary support; alterations; demolition; safety.

Raking, flying and dead shores.

MODULE D6: FLOORS

D6.1: TYPES, FUNCTION AND CONSTRUCTION OF FLOORS

The student should be able to:

1. list the requirements of floors;

2. list floor members;

3. differentiate between types of floors;

4. name the members in timber floors;

5. describe the construction of openings in floors;

6. draw a plan and section of a timber floor;

7. Stability; hardwearing materials; even surface; ease of maintenance; resistance to wear; aesthetic appearance; resilience.

8. Joists, sills, bridging, subfloor, skirting, header.

10. Wall plates; strutting (solid, herringbone); joists; floor boards.

11. Trimmer, trimming, trimmed, joists.

12. Plan; section; details. Joists, subfloor; finish.
D6.1: TYPES, FUNCTION AND CONSTRUCTION OF FLOORS

SPECIFIC OBJECTIVES

The student should be able to:

7. state the important steps in constructing timber floors;
 Layout, measure and cut sills and joists. Nail joists to header. Install bridging, fix boarding, install finish.

8. construct timber floors;
 Joists; plates; floor boards.

9. sketch the arrangement of shores;
 Dead shores, raking shores.

10. define a column;
 Vertical member of wood, concrete, steel, supporting wall, roof, beam.

11. draw a column and state its purpose;
 Timber column, concrete column, steel column.

12. define a beam and state its purpose.
 Timber beam, concrete beam, steel beam. Support for roof, wall.

CONTENT

MODULE D7: ROOFS

D7.1: TYPES, FUNCTION AND CONSTRUCTION OF ROOFS

The student should be able to:

1. state the functions of roofs;
 Protection from the elements being external walls; appearance.

2. identify different types of roofs;
 Lean-to; flat roof (concrete, timber); pitched roof (timber); hip roof/valley; pitch (¼, ½, α).

3. distinguish between members of roofs;
 Rafters (common. Hip. Jack); plates; ridge; ties; purlins.

4. explain the purposes of eaves;
 Protection of roof members; protection of walls; appearance, ventilation.

5. list the types of ceilings and state their functions;
 Types: suspended, close boarded. Functions: tying together opposite walls and roofs; supporting upper floors; aesthetics, insulation.
D7.1: TYPES, FUNCTION AND CONSTRUCTION OF ROOFS CONT’D

OBJECTIVES

The student should be able to:

6. list the advantages of using trusses;

7. construct timber roofs;

8. draw a section showing roof members;

9. list types of roof coverings;

10. apply roof coverings;

11. make a working drawing of a trussed roof frame;

12. calculate rafter lengths.

CONTENT

Time; cost; strength, materials savings; weight reduction; ease of prefabrication; quality control.

Common rafters; hip rafters; jack rafters; battens, ridge.

Rafter, ridge, plate, battens, covering.

Shingles, slates; tiles; corrugated sheets; asphalt; felt.

Pitched roofs, hip roofs.

Truss details; fixing details.

Pythagoras method, framing square method.

MODULE D8: DOORS AND WINDOWS

D8.1: TYPES, FUNCTION AND CONSTRUCTION OF DOORS (a) DOORS

The student should be able to:

1. state the functions of a door;

2. construct a door jamb;

3. construct a panel door;

4. identify different types of doors;

5. identify ironmongery;

Protection; security; privacy; ventilation; light; access/exit.

Layout, joint, linings, solid frames; standard sizes.

Marking out; cutting; assembling.

Ledged, braced and batten, V-joint; panel; solid; flush (interior) fire check.

Hinges; locks; catch; pulls; tower bolts. Closers; openers.
<table>
<thead>
<tr>
<th>D8.1: TYPES, FUNCTION AND CONSTRUCTION OF DOORS CONT’D</th>
<th>SPECIFIC OBJECTIVES</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The student should be able to:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. swing (hang) a door and fit ironmongery or door furniture.</td>
<td>Locks, hinges, bolts.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D8.2: TYPES, FUNCTION AND CONSTRUCTION OF WINDOWS</th>
<th>SPECIFIC OBJECTIVES</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>The student should be able to:</td>
<td>1. state the functions of windows;</td>
<td>Provide lighting and ventilation. Sound reduction, appearance.</td>
</tr>
<tr>
<td></td>
<td>2. discuss window requirements;</td>
<td>Minimum size; positioning (depending on purpose of room).</td>
</tr>
<tr>
<td></td>
<td>3. make sketches of different types of windows;</td>
<td>Awning; hopper; sash; casement; pivot, louver.</td>
</tr>
<tr>
<td></td>
<td>4. explain the process of glazing;</td>
<td>Weather strips; putty; plain glass; sheet glass; wire glass.</td>
</tr>
<tr>
<td></td>
<td>5. construct joints for a window frame;</td>
<td>Joints (mortise & tenon); marking out.</td>
</tr>
<tr>
<td></td>
<td>6. construct a sill;</td>
<td>Marking out; joints; grooves; weather bars; capillary and anti-capillary grooves.</td>
</tr>
<tr>
<td></td>
<td>7. identify ironmongery for windows;</td>
<td>Hinges (butt) stays; fasteners; tower bolts; tracks (sliding).</td>
</tr>
<tr>
<td></td>
<td>8. draw details of windows in masonry block wall</td>
<td>Frame; glass fixing; sill, awning, sliding, sash, casement, pivot.</td>
</tr>
</tbody>
</table>
MODULE D9: STAIRS

D9.1: TYPES, FUNCTION AND CONSTRUCTION OF STAIRS

SPECIFIC OBJECTIVES

The student should be able to:

1. state the functions of stairs;

2. define common terms associated with stairs;

3. calculate number of risers and treads;

4. construct timber staircase;

5. make sectional drawing of timber staircase;

6. explain rules/regulations relating to stairs.

CONTENT

Access from floor to floor; emergency escape.

Riser; tread, run; rise; stringer; headroom.

Methods of setting out total rise, total run, framing square, calculation.

Laying out (straight flight), cut members, construct joints, assemble parts.

Stringer; tread details; riser details; finishes.

Minimum dimensions; treads; risers; headroom; slope; handrails.

MODULE D10: FINISHES

D10.1: FUNCTION, TYPES AND APPLICATION OF FINISHES

The student should be able to:

1. explain the process of rendering;

2. explain the process of plastering;

3. list types of paints/varnishes/stains;

4. list the properties of paints/varnishes/stains;

5. apply stains/paints/varnishes to masonry/metal and wood surfaces;

6. state the purpose of solvents;

BACKGROUND PREPARATION; MATERIALS (CEMENT, SAND); APPLICATION (TROWEL, STEEL, TEXTURED FINISHES).

INTERNAL FINISHES; MATERIALS (CEMENT, SAND, LIME); PROPERTIES; APPLICATION (TROWEL, FLOAT, TEXTURED).

TYPES (EMULSION, OIL, ENAMEL); COMPOSITION

WATER RESISTANCE, PRESERVATION, APPEARANCE, PROTECTION.

BRUSHES; ROLLERS; SPRAY-GUNS; PREPARATION OF SURFACES; PRECAUTIONS, MAINTENANCE.

MIXING PAINT/STAIN/VARNISH, CLEANING EQUIPMENT.
D10.1: FUNCTION, TYPES AND APPLICATION OF FINISHES CONT'D

SPECIFIC OBJECTIVES

The student should be able to:

7. explain methods of manufacturing tiles;

8. apply tiles to concrete and wood surfaces;

9. discuss the application of paneling and wall boards;

10. explain the use of glass blocks

CONTENT

Concrete; clay; terrazzo; ceramic/glazed/vinyl/linoleum, plastic; wood blocks.

Adhesives; background; screeding; lining out; grouting, preparation, sequential steps.

Preparation of surfaces; fixing devices (nails, screws); methods of fixing, strips, patented fixtures.

Light; decorative features; maintenance; weatherability.

MODULE D11: RELATED SERVICES

D11.1: RELATED SERVICES (PLUMBING, DRAINAGE, SEWERAGE, ELECTRICS, TELEPHONE)

The student should be able to:

1. explain the principles of plumbing;

2. explain the principles of roof drainage and disposal;

3. describe the combined system of drainage;

4. describe the operation of the separate drainage systems;

5. explain the principles of drain runs;

6. discuss the methods of sewage disposal;

7. discuss the functions of various service trades on site.

CONTENT

Pipes (types); sizes, materials, methods of jointing; fittings; trap seals; valves; applications, non-return valves.

Pitch/slope; gutters; bends; downpipes; gullies; soak-aways; inspection chambers; drain runs; vents.

One pipe; cost, maintenance, effectiveness.

Two pipes; cost, maintenance, effectiveness.

Gradients, speed velocity, self-cleansing; manholes; rodding eyes;

Cesspools; septic tanks; absorption pits; soakaways; disposal fields (filter beds); chemical chambers.

Electricity; telephone; air-conditioning.
MODULE D12: BUILDING TEAMS AND BUILDING TRADES

D12.1: BUILDING TEAMS AND BUILDING TRADES

SPECIFIC OBJECTIVES

The student should be able to:

1. explain the responsibilities of members of the Building Team;

2. list the various building trades;

3. describe the various building trades.

CONTENT

- Client, architect, engineer, clerk of works, quantity surveyor, land surveyor, general contractor, site supervisor, foreman.
- Carpentry, masonry, tiling, painting, plastering, electrical wiring.
- Functions of various trades and trade persons.

MODULE D13: HISTORY OF BUILDINGS

D13.1: FACTORS INFLUENCING DESIGNS

The student should be able to:

1. discuss factors influencing building designs;

2. discuss, with illustrations (sketches), the influence of other cultures on local building styles.

CONTENT

- History, materials, culture, climate.
- Features of British, French, African, Indian, American architecture.

MODULE D14: INTRODUCTION TO COMPUTER

D14.1: BASIC COMPUTER APPRECIATION

The student should be able to:

1. list the various parts that make up a computer system.

CONTENT

- Input and output devices, storage devices, control processing unit, system software, application software, computer networks, protective devices: voltage regulator, surge protector, UPS.

D14.2: OPERATING THE SYSTEM

The student should be able to:

1. identify the steps involved in operating the computer system.

CONTENT

- Boot up the system; format a blank disk; back up data; software application; copy files; file management; DOS, Windows, Mac OS.
D14.3: BASIC SOFTWARE PACKAGES

SPECIFIC OBJECTIVES

The student should be able to:

1. perform simple tasks using commonly available applications.

CONTENT

Windows; productivity tools: Wordprocessing, Spreadsheet, Data Base Management; AutoCad, Graphic Packages.

D14.4: COMPUTER APPLICATIONS

The student should be able to:

2. list the many uses of the computer in Industry;

CONTENT

Accounting/financial applications; human resource applications; material/inventory management; process control; robotics; decision support system; research and development, CAD/CAM, CNC.

MODULE D15: CAREER OPPORTUNITIES

D15.1: CAREER IN BUILDING TECHNOLOGY AND OTHER RELATED FIELDS

The student should be able to:

1. list career opportunities in the Building Technology (Construction) and related fields locally and regionally;

2. compare occupational profiles and descriptions of two occupations in the field of engineering;

3. identify opportunities/situations in your community/territory that may lead to employment or self employment in Building Technology (Construction) or related fields;

4. source information on career opportunities in Building Technology (Construction);

CONTENT

Fields: Civil/Construction Engineering; Electrical/Electronic Engineering; Mechanical/Production Engineering; Industrial Engineering; Industrial or maintenance plants jobs. Professional journals/organisations, internet, newspapers.
D15.1: CAREERS IN BUILDING TECHNOLOGY AND OTHER RELATED FIELDS CONT’D

SPECIFIC OBJECTIVES

The student should be able to:

5. Prepare and write report/short paper on:
 a) industrial tours made;
 b) current innovations in the field of engineering;
 c) engineers, inventors or educators who have made significant contributions to the field of engineering.

<table>
<thead>
<tr>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visits to multinational, regional, national engineering and service companies. Use of the computer in engineering. Great inventors and engineers.</td>
</tr>
</tbody>
</table>

D15.2: PROFESSIONAL ETHICS AND BUSINESS NORMS

CONTENT

The student should be able to:

1. list work habits necessary for the development of good work attitudes;

2. identify education/training/qualification requirement for selected occupations in the field of Building Technology (Construction);

3. specify duties and responsibilities for occupations related to Building Technology (Construction);

4. demonstrate knowledge of business norms, regulations and codes.

<table>
<thead>
<tr>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code of ethics, punctuality, regularity, neatness, following instructions, safety, attitudes, tolerance, courtesy, human relations. Secondary education, practical experience and training certificate, Diploma, Associate Degree, Bachelor Degree. Duties and responsibilities of semi-skilled, skilled, supervisor, manager. Trade/business/regulations, norms/codes. Manuals professional associations. Legal and strategy requirements. Financial transactions – sources and procedures, contracts and agreements.</td>
</tr>
</tbody>
</table>
THE SCHOOL-BASED ASSESSMENT COMPONENT

RATIONALE

The School-Based Assessment (SBA) component of the Building Technology - Construction option will measure the practical skills not tested in Papers 1 and 2. The assignments set for SBA are intended to deepen the students' knowledge and help them achieve competency in skills required in the building industry and which are within the competence of secondary school candidates.

By focussing on processes as well as product, the SBA component will allow students to demonstrate improvement in skills over a period of time and for their teachers' involvement in the assessment process.

REQUIREMENTS

Each candidate is required to complete a practical and a written assignment during terms 4 and 5 of the two years' course (Terms one and two of the examination year). The practical assignment is worth 90 marks and the written assignment is worth 30 marks.

Practical Assignment

The practical assignment should be undertaken as a group project with individual input. Each group of candidates must choose a project from a list of projects set by CXC and circulated to schools at the beginning of the examination year. These projects could include the completion of scale model domestic building or other structure such as a garage, tuck-shop, guard house, child's play-house, or a staircase. Guidelines for, but not full details of projects will be included in the booklet issued by CXC. Design decisions made by candidates will be appropriately rewarded.

Procedure

The teacher will determine the size of the project or projects, having taken into account the resources available. It is suggested that where this is feasible, a single project of appropriate size be selected, so that the entire class can participate in its construction. Ideally, such a project should be useable by the school, or by a family group or individual within the community.

Although a significant portion of the work will be carried out in groups of 3-5, each student should select a component or section of the project and work on it independently, using the concept of prefabrication where possible. Each student will be assessed individually on the section of the practical work undertaken as well as on his/her working drawings, and project plan. Each candidate is expected:

i) to provide a plan sheet for the project which MUST include the following:
 a) drawings and/or sketches;
 b) steps of procedure;
 c) a bill of materials;
 d) a list of tools and equipment to be used;
 e) to construct a component or section of the group project.
Written Assignment

The written assignment will take the form of a report of about 1000-1200 words based on the Common Module: Career Opportunities. Candidates must write on the topic set by CXC for each examination. The topic will be based on the themes in Module, i.e.

i) Job Search
 a) Jobs in the Building Construction industry (types, wages, other remuneration);
 b) Qualifications for the job (A class/B class/C class workers) or for apprentices and/or trainees;
 c) Type, availability and cost of training required: trade school, vocational/technical school, college or university;
 d) Desirable work habits and attitudes;
 e) Writing letters of application for various types of jobs (how to set out a CV);
 f) Interviewing skills.

ii) Career Choice
 a) Gathering information on careers (from libraries, labour offices and internet);
 b) Writing profiles on different careers;
 c) Planning debates and lectures on different careers under the guidance of the teacher;
 d) Making and justifying a career choice.

iii) Industrial Visits
 a) Planned visits to industries, industrial sites. (These should include small, medium and large businesses). A good example is a construction site, housing scheme/project.
 b) Preparation of report on the visit: the report should include, where possible, sketches, drawings and photographs in addition to the written material.

iv) Profile of Engineer or Inventor
 a) Summary of biographical data;
 b) Major works/experiments/inventions and how these were validated;
 c) Evaluation/impact of individual’s contribution to the industry.

Candidates will be assessed on accuracy of information, clarity of presentation, the use of technical language and knowledge of career opportunities in the Building industry as outlined in Common Module of the Unit.
ASSESSMENT OF ASSIGNMENTS

Teacher Assessment

The teacher will mark the assignments and submit the marks on the specified Assessment Sheet to the Local Registrar to reach the CXC Headquarters Office by April 30 in the year of the examination. Local Registrars will therefore set their own deadline date to fall prior to April 30. The assignments must be marked based on the mark allocation given in the Specimen SBA Candidates’ Assessment Sheet on page 134.

External Assessment

An external Assessor will visit each school twice during the final year. On the first visit he/she will assess the process of constructing the practical project and on the final visit he/she will reassess the completed project work already marked by the teacher. The visiting schedule will be agreed on by the Local Registrar, Principal and the Assessor.

Retention of Work

All projects are a part of the examination work and therefore will be considered the property of CXC. CXC will request from schools written projects identified by CXC. The specified projects must be sent to reach the CXC Office indicated with the request by June 30 in the year of the examination. Projects remaining at the schools MUST be securely retained by the school administration on behalf of CXC until three months after the publication of examination results.

SBA materials

By September 1 of each year, schools should receive from Local Registrars information on the SBA requirements for that academic year. This should include:

i) the practical projects set for that year with their assessment criteria and mark scheme and accompanying guidelines for their construction (one booklet per candidate);

ii) Project Plan Sheets (one per candidate);

iii) the list of topics for the written assignment;

iv) Record Sheets with mark allocation (one for 10 candidates);

v) a copy of the Moderator’s Rating Sheet (only for schools presenting candidates for the first time).

Materials for Projects

The materials specified by CXC in the SBA booklet should be used for the construction of projects wherever possible.

In cases where the materials specified for the construction of projects are scarce or expensive, suitable alternatives may be used. An explanatory report must be submitted by the teacher together with the Assessment Sheet to reach CXC Headquarters, Barbados by April 30 in the year of the examination.
GUIDELINES FOR RESIT CANDIDATES

Candidates who have obtained at least 50 per cent of the total SBA marks in their initial attempt will not be required to repeat this component of the examination provided that they rewrite the examination in the year immediately following the first sitting.

Such candidates should, on registration, indicate that they are resit candidates and give their registration number from the previous year.

Candidates who have obtained less than 50 per cent of the total SBA marks must repeat the SBA requirements set for Terms 4 and 5. Repeat candidates must be entered for the examination through an educational institution.
WORKSHOP/LABORATORY FACILITIES

Recommended equipment for a class of 16

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machines</td>
<td></td>
</tr>
<tr>
<td>Circular saw</td>
<td>1</td>
</tr>
<tr>
<td>Band (Minimum 350mm Dia)</td>
<td>1</td>
</tr>
<tr>
<td>Sabre (jig) saw</td>
<td>1</td>
</tr>
<tr>
<td>Radial-Arm (Min. Dia) saw</td>
<td>1</td>
</tr>
<tr>
<td>Jointer (150mm Min)</td>
<td>1</td>
</tr>
<tr>
<td>Thickness Planer (300mm)</td>
<td>1</td>
</tr>
<tr>
<td>Drill Press (with morticing attachment)</td>
<td>1</td>
</tr>
<tr>
<td>Finishing Sander</td>
<td>1</td>
</tr>
<tr>
<td>Belt Sander (75 x 600mm)</td>
<td>1</td>
</tr>
<tr>
<td>Portable Router (1 ½ h.p.)</td>
<td>1</td>
</tr>
<tr>
<td>Electric Hand-Drill</td>
<td>2</td>
</tr>
<tr>
<td>Wood Lathe – 300mm Gap</td>
<td>1</td>
</tr>
<tr>
<td>Air compressor (1 h.p.)</td>
<td>1</td>
</tr>
<tr>
<td>Hand Tools</td>
<td></td>
</tr>
<tr>
<td>Squares</td>
<td></td>
</tr>
<tr>
<td>Sliding Bevel</td>
<td>5</td>
</tr>
<tr>
<td>Try</td>
<td>5</td>
</tr>
<tr>
<td>Framing</td>
<td>5</td>
</tr>
<tr>
<td>Builders’ Square (3:4:5) (to be fabricated in workshop)</td>
<td>2</td>
</tr>
<tr>
<td>Hand Saws</td>
<td></td>
</tr>
<tr>
<td>Hand: Rip, Cross Cut, Back</td>
<td>5</td>
</tr>
<tr>
<td>Coping</td>
<td>3</td>
</tr>
<tr>
<td>Clamps</td>
<td></td>
</tr>
<tr>
<td>G (100, 150 and 200mm)</td>
<td>12</td>
</tr>
<tr>
<td>Bar (1200mm with extension)</td>
<td>6</td>
</tr>
<tr>
<td>Bits</td>
<td></td>
</tr>
<tr>
<td>Braces and 3 sets of bits sizes 6mm – 32mm – 3mm intervals</td>
<td>3</td>
</tr>
<tr>
<td>Expansion</td>
<td>3</td>
</tr>
<tr>
<td>High Speed</td>
<td>3</td>
</tr>
<tr>
<td>Drill (3m – 13mm)</td>
<td>3</td>
</tr>
<tr>
<td>ITEM</td>
<td>QUANTITY</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>Wood Chisel</td>
<td></td>
</tr>
<tr>
<td>Bevel Edge (3mm – 25mm)</td>
<td>3</td>
</tr>
<tr>
<td>Firmer (3mm – 25mm)</td>
<td>3</td>
</tr>
<tr>
<td>Mortising (6mm – 13 mm)</td>
<td>3</td>
</tr>
<tr>
<td>(Lathe) Turning tools – Heavy Duty</td>
<td>1</td>
</tr>
<tr>
<td>Planes</td>
<td></td>
</tr>
<tr>
<td>Jack</td>
<td>6</td>
</tr>
<tr>
<td>Smoothing</td>
<td>4</td>
</tr>
<tr>
<td>Fore</td>
<td>1</td>
</tr>
<tr>
<td>Hammers</td>
<td></td>
</tr>
<tr>
<td>Claw hammers</td>
<td>10</td>
</tr>
<tr>
<td>Sledge Hammers (2kg)</td>
<td>2</td>
</tr>
<tr>
<td>Warrington Hammers</td>
<td>2</td>
</tr>
<tr>
<td>Mallets</td>
<td></td>
</tr>
<tr>
<td>(Wooden) Mallets (To be fabricated in workshop)</td>
<td>20</td>
</tr>
<tr>
<td>Rubber Mallets</td>
<td>2</td>
</tr>
<tr>
<td>Knives</td>
<td></td>
</tr>
<tr>
<td>Utility knives</td>
<td>6</td>
</tr>
<tr>
<td>Marking knives</td>
<td>10</td>
</tr>
<tr>
<td>Putty knives</td>
<td>6</td>
</tr>
<tr>
<td>Measuring & Layout Tools</td>
<td></td>
</tr>
<tr>
<td>Marking Gauges</td>
<td>10</td>
</tr>
<tr>
<td>Mortise Gauges</td>
<td>10</td>
</tr>
<tr>
<td>Dividers</td>
<td>6</td>
</tr>
<tr>
<td>Calipers (internal & external)</td>
<td>6</td>
</tr>
<tr>
<td>Nail Punches</td>
<td>6</td>
</tr>
<tr>
<td>30m Measuring Tapes</td>
<td>2</td>
</tr>
<tr>
<td>5m Measuring Tapes</td>
<td>5</td>
</tr>
<tr>
<td>Spirit Level (600mm long)</td>
<td>3</td>
</tr>
<tr>
<td>Spirit Level (1200mm long)</td>
<td>3</td>
</tr>
<tr>
<td>Chalk Line</td>
<td>4</td>
</tr>
<tr>
<td>Line Level</td>
<td>6</td>
</tr>
<tr>
<td>Screwdrivers</td>
<td></td>
</tr>
<tr>
<td>Flat (Assorted Sizes)</td>
<td>10</td>
</tr>
<tr>
<td>Phillips (Assorted sizes)</td>
<td>10</td>
</tr>
<tr>
<td>ITEM</td>
<td>QUANTITY</td>
</tr>
<tr>
<td>----------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Spoke Shaves</td>
<td></td>
</tr>
<tr>
<td>Flat</td>
<td>4</td>
</tr>
<tr>
<td>Round</td>
<td>4</td>
</tr>
<tr>
<td>Hatchet</td>
<td>1</td>
</tr>
<tr>
<td>Additional Tools</td>
<td></td>
</tr>
<tr>
<td>Crowbars</td>
<td>2</td>
</tr>
<tr>
<td>Steel Fixers Nippers</td>
<td>2</td>
</tr>
<tr>
<td>Pliers</td>
<td>2</td>
</tr>
<tr>
<td>Shares</td>
<td>2</td>
</tr>
<tr>
<td>Pick-Axes</td>
<td>2</td>
</tr>
<tr>
<td>Oil stones</td>
<td>3</td>
</tr>
<tr>
<td>Shovels (long & short handles)</td>
<td>4</td>
</tr>
<tr>
<td>Trowels</td>
<td>6</td>
</tr>
<tr>
<td>Steel Floats</td>
<td>6</td>
</tr>
<tr>
<td>Wood Floats (to be fabricated in workshop)</td>
<td>6</td>
</tr>
<tr>
<td>Trammel</td>
<td>1</td>
</tr>
<tr>
<td>Hack Saw (with replacement blades)</td>
<td>2</td>
</tr>
<tr>
<td>Cabinet Scrapers</td>
<td>2</td>
</tr>
<tr>
<td>Tile Cutter</td>
<td>1</td>
</tr>
</tbody>
</table>
The following is a list of books that may be used as resource material for the CXC Building Technology syllabus. The list is not exhaustive or prescriptive, but indicates sources which may be appropriate for use by teachers and students.

Bayliss, R.

Chudley, R.

Everett, Allan

Gerrish, Howard H.

Green, R.

Hilton, F.

Seeley, Ivor H.

Warland, D. E.

ABC Building Dictionary

CXC Teacher Resource Manuals *(Building)* Numbers 1-12.

Local Building Code
CARIBBEAN EXAMINATIONS COUNCIL

BUILDING TECHNOLOGY – OPTION (II) CONSTRUCTION
SCHOOL-BASED ASSESSMENT CANDIDATES’ RECORD SHEET

SCHOOL: __ INSTRUCTOR: ______________________________
TERRITORY: ______________________________________ PROFICIENCY: TECHNICAL

This Record Sheet is to be returned to the Local Registrar
in time to be forwarded to CXC by April 30 in the year of the examination

<table>
<thead>
<tr>
<th>PROJECT TITLE</th>
<th>PICTORIAL SKETCH</th>
<th>ORTHOGRAPHIC DRAWING</th>
<th>PROCEDURES</th>
<th>LIST OF MATERIALS</th>
<th>LAYOUT AND CONSTRUCTION</th>
<th>JOINTS</th>
<th>ASSEMBLY</th>
<th>FINISH</th>
<th>TOTAL</th>
<th>PROJECT TITLE/TOpic</th>
<th>INTRODUCTION</th>
<th>CONTENT</th>
<th>ILLUSTRATION</th>
<th>SUMMARY</th>
<th>TOTAL</th>
<th>GRAND TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>04</td>
<td>06</td>
<td>04</td>
<td>06</td>
<td>15</td>
<td>20</td>
<td>15</td>
<td>20</td>
<td>90</td>
<td></td>
<td>05</td>
<td>10</td>
<td>10</td>
<td>05</td>
<td>30</td>
<td>120</td>
</tr>
</tbody>
</table>

Head of Department: _____________________ Principal: _____________________ Date: _____________________

Western Zone Office

CXC/24/T/ SYLL 00